ﻻ يوجد ملخص باللغة العربية
Following the discovery of a new family of kagome prototypical materials with structure AV$_3$Sb$_5$ (A = K, Rb, Cs), there has been heightened interest in studying correlation-driven electronic phenomena in these kagome lattice systems. The study of these materials has gone beyond magneto-transport measurements to reveal exciting features such as Dirac bands, anomalous Hall effect, bulk superconductivity with $T_c$ $sim$ 0.9 K-2.5 K, and the observation of charge density wave instabilities which suggests an intertwining of topological physics and new quantum orders. Moreover, very recent works on numerous types of experiments have appeared further examining the unconventional superconductivity and the exotic electronic states found within these kagome materials. Theories on the strong interactions that play a role in these systems have been proposed to shed light on the nature of these topological charge density waves. In this brief review, we summarize these recent experimental findings and theoretical proposals to connect them with the concepts of topological physics and strongly-correlated electron systems.
We argue that the topological charge density wave phase in the quasi-2D Kagome superconductor AV$_3$Sb$_5$ is a chiral flux phase. Considering the symmetry of the Kagome lattice, we show that the chiral flux phase has the lowest energy among those st
The recent discovery of AV$_3$Sb$_5$ (A=K,Rb,Cs) has uncovered an intriguing arena for exotic Fermi surface instabilities in a kagome metal. Among them, superconductivity is found in the vicinity of multiple van Hove singularities, exhibiting indicat
The superconducting gap structures in the transition-metal-based kagome metal AV$_3$Sb$_5$ (A=K,Rb,Cs), the first family of quasi-two-dimensional kagome superconductors, remain elusive as there is strong experimental evidence for both nodal and nodal
Recently, intensive studies have revealed fascinating physics, such as charge density wave and superconducting states, in the newly synthesized kagome-lattice materials $A$V$_3$Sb$_5$ ($A$=K, Rb, Cs). Despite the rapid progress, fundamental aspects l
The family of metallic kagome compounds $A$V$_3$Sb$_5$ ($A$=K, Rb, Cs) was recently discovered to exhibit both superconductivity and charge order. The nature of the charge-density wave (CDW) phase is presently unsettled, which complicates the interpr