ﻻ يوجد ملخص باللغة العربية
Perturbation theory (PT) has been used to interpret the observed nonlinear large-scale structure statistics at the quasi-linear regime. To facilitate the PT-based analysis, we have presented the GridSPT algorithm, a grid-based method to compute the nonlinear density and velocity fields in standard perturbation theory (SPT) from a given linear power spectrum. Here, we further put forward the approach by taking the redshift-space distortions into account. With the new implementation, we have, for the first time, generated the redshift-space density field to the fifth order and computed the next-to-next-to-leading order (2 loop) power spectrum and the next-to-leading order (1 loop) bispectrum of matter clustering in redshift space. By comparing the result with corresponding analytical SPT calculation and $N$-body simulations, we find that the SPT calculation (A) suffers much more from the UV sensitivity due to the higher-derivative operators and (B) deviates from the $N$-body results from the Fourier wavenumber smaller than real space $k_{rm max}$. Finally, we have shown that while Pade approximation removes spurious features in morphology, it does not improve the modeling of power spectrum and bispectrum.
We develop an analytical forward model based on perturbation theory to predict the redshift-space galaxy overdensity at the field level given a realization of the initial conditions. We find that the residual noise between the model and simulated gal
We present the one-loop 2-point function of biased tracers in redshift space computed with Lagrangian perturbation theory, including a full resummation of both long-wavelength (infrared) displacements and associated velocities. The resulting model ac
The large-scale matter distribution in the late-time Universe exhibits gravity-induced non-Gaussianity, and the bispectrum, three-point cumulant is expected to contain significant cosmological information. In particular, the measurement of the bispec
Perturbation theory (PT) calculation of large-scale structure has been used to interpret the observed non-linear statistics of large-scale structure at the quasi-linear regime. In particular, the so-called standard perturbation theory (SPT) provides
We present a self-consistent Bayesian formalism to sample the primordial density fields compatible with a set of dark matter density tracers after cosmic evolution observed in redshift space. Previous works on density reconstruction did not self-cons