ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic self-triggered control for nonlinear systems based on hybrid Lyapunov functions

87   0   0.0 ( 0 )
 نشر من قبل Michael Hertneck
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Self-triggered control (STC) is a well-established technique to reduce the amount of samples for sampled-data systems, and is hence particularly useful for Networked Control Systems. At each sampling instant, an STC mechanism determines not only an updated control input but also when the next sample should be taken. In this paper, a dynamic STC mechanism for nonlinear systems is proposed. The mechanism incorporates a dynamic variable for determining the next sampling instant. Such a dynamic variable for the trigger decision has been proven to be a powerful tool for increasing sampling intervals in the closely related concept of event-triggered control, but was so far not exploited for STC. This gap is closed in this paper. For the proposed mechanism, the dynamic variable is chosen to be the filtered values of the Lyapunov function at past sampling instants. The next sampling instant is, based on the dynamic variable and on hybrid Lyapunov function techniques, chosen such that an average decrease of the Lyapunov function is ensured. The proposed mechanism is illustrated with a numerical example from the literature. For this example, the obtained sampling intervals are significantly larger than for existing static STC mechanisms. This paper is the accepted version of [1], containing also proofs of the main results.



قيم البحث

اقرأ أيضاً

It has been shown that self-triggered control has the ability to reduce computational loads and deal with the cases with constrained resources by properly setting up the rules for updating the system control when necessary. In this paper, self-trigge red stabilization of Boolean control networks (BCNs), including deterministic BCNs, probabilistic BCNs and Markovian switching BCNs, is first investigated via semi-tensor product of matrices and Lyapunov theory of Boolean networks. The self-triggered mechanism with the aim to determine when the controller should be updated is given based on the decrease of the corresponding Lyapunov functions between two successive sampling times. We show that the self-triggered controllers can be chosen as the conventional controllers without sampling, and also can be optimally constructed based on the triggering conditions.
Self-triggered control (STC) is a sample-and-hold control method aimed at reducing communications within networked-control systems; however, existing STC mechanisms often maximize how late the next sample is, and as such they do not provide any sampl ing optimality in the long-term. In this work, we devise a method to construct self-triggered policies that provide near-maximal average inter-sample time (AIST) while respecting given control performance constraints. To achieve this, we rely on finite-state abstractions of a reference event-triggered control, in which early triggers are also allowed. These early triggers constitute controllable actions of the abstraction, for which an AIST-maximizing strategy can be computed by solving a mean-payoff game. We provide optimality bounds, and how to further improve them through abstraction refinement techniques.
We introduce High-Relative Degree Stochastic Control Lyapunov functions and Barrier Functions as a means to ensure asymptotic stability of the system and incorporate state dependent high relative degree safety constraints on a non-linear stochastic s ystems. Our proposed formulation also provides a generalisation to the existing literature on control Lyapunov and barrier functions for stochastic systems. The control policies are evaluated using a constrained quadratic program that is based on control Lyapunov and barrier functions. Our proposed control design is validated via simulated experiments on a relative degree 2 system (2 dimensional car navigation) and relative degree 4 system (two-link pendulum with elastic actuator).
In this paper, a distributed learning leader-follower consensus protocol based on Gaussian process regression for a class of nonlinear multi-agent systems with unknown dynamics is designed. We propose a distributed learning approach to predict the re sidual dynamics for each agent. The stability of the consensus protocol using the data-driven model of the dynamics is shown via Lyapunov analysis. The followers ultimately synchronize to the leader with guaranteed error bounds by applying the proposed control law with a high probability. The effectiveness and the applicability of the developed protocol are demonstrated by simulation examples.
Safety and stability are common requirements for robotic control systems; however, designing safe, stable controllers remains difficult for nonlinear and uncertain models. We develop a model-based learning approach to synthesize robust feedback contr ollers with safety and stability guarantees. We take inspiration from robust convex optimization and Lyapunov theory to define robust control Lyapunov barrier functions that generalize despite model uncertainty. We demonstrate our approach in simulation on problems including car trajectory tracking, nonlinear control with obstacle avoidance, satellite rendezvous with safety constraints, and flight control with a learned ground effect model. Simulation results show that our approach yields controllers that match or exceed the capabilities of robust MPC while reducing computational costs by an order of magnitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا