ﻻ يوجد ملخص باللغة العربية
The basin of attraction is the set of initial points that will eventually converge to some attracting set. Its knowledge is important in understanding the dynamical behavior of a given dynamical system of interest. In this work, we address the problem of reconstructing the basins of attraction of a multistable system, using only labeled data. To this end, we view this problem as a classification task and use a deep neural network as a classifier for predicting the attractor that corresponds to any given initial condition. Additionally, we provide a method for obtaining an approximation of the basin boundary of the underlying system, using the trained classification model. Finally, we provide evidence relating the complexity of the structure of the basins of attraction with the quality of the obtained reconstructions, via the concept of basin entropy. We demonstrate the application of the proposed method on the Lorenz system in a bistable regime.
We study partition of networks into basins of attraction based on a steepest ascent search for the node of highest degree. Each node is associated with, or attracted to its neighbor of maximal degree, as long as the degree is increasing. A node that
We study the expressivity of deep neural networks. Measuring a networks complexity by its number of connections or by its number of neurons, we consider the class of functions for which the error of best approximation with networks of a given complex
We present an experiment that systematically probes the basins of attraction of two fixed points of a nonlinear nanomechanical resonator and maps them out with high resolution. We observe a separatrix which progressively alters shape for varying driv
Recently, physics-driven deep learning methods have shown particular promise for the prediction of physical fields, especially to reduce the dependency on large amounts of pre-computed training data. In this work, we target the physics-driven learnin
In this paper, we investigate geometric properties of monotone systems by studying their isostables and basins of attraction. Isostables are boundaries of specific forward-invariant sets defined by the so-called Koopman operator, which provides a lin