ﻻ يوجد ملخص باللغة العربية
Dialog grounding enables conversational models to make full use of external information to establish multiple desired qualities, such as knowledgeable, engaging and empathetic. However, naturally grounded dialog corpora are usually not directly available, which puts forward requirements for the few-shot learning ability of conversational models. Motivated by recent advances in pre-trained language models and prompt-based learning, in this paper we explore prompt-based few-shot learning for grounded dialog generation (GDG). We first formulate the prompt construction for GDG tasks, based on which we then conduct comprehensive empirical analysis on two common types of prompting methods: template-based prompting and soft-prompting. We demonstrate the potential of prompt-based methods in few-shot learning for GDG and provide directions of improvement for future work.
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical mo
Prompts for pre-trained language models (PLMs) have shown remarkable performance by bridging the gap between pre-training tasks and various downstream tasks. Among these methods, prompt tuning, which freezes PLMs and only tunes soft prompts, provides
As labeling cost for different modules in task-oriented dialog (ToD) systems is high, a major challenge in practice is to learn different tasks with the least amount of labeled data. Recently, prompting methods over pre-trained language models (PLMs)
As the labeling cost for different modules in task-oriented dialog (ToD) systems is expensive, a major challenge is to train different modules with the least amount of labeled data. Recently, large-scale pre-trained language models, have shown promis
Few-shot relation extraction (FSRE) focuses on recognizing novel relations by learning with merely a handful of annotated instances. Meta-learning has been widely adopted for such a task, which trains on randomly generated few-shot tasks to learn gen