ﻻ يوجد ملخص باللغة العربية
We treat quantum chromodynamics (QCD) using a set of Dyson-Schwinger equations derived, in differential form, with the Bender-Milton-Savage technique. In this way, we are able to derive the low energy limit that assumes the form of a non-local Nambu-Jona-Lasinio model with all the parameters properly fixed by the QCD Lagrangian and the determination of the mass gap of the gluon sector.
We evaluate the next-to-leading order correction to the Nambu-Jona-Lasinio model starting from quantum chromodynamics. We show that a systematic expansion exists, starting from a given set of exact classical solutions, so that higher order correction
Based on the Cornwall-Jackiw-Tomboulis effective potential, we extensively study nonperturbative renormalization of the gauged Nambu-Jona-Lasinio model in the ladder approximation with standing gauge coupling. Although the pure Nambu-Jona-Lasinio mod
We present a revisited version of the nonextensive QCD-based Nambu - Jona-Lasinio (NJL) model describing the behavior of strongly interacting matter proposed by us some time ago. As before, it is based on the nonextensive generalization of the Boltzm
We study the theoretical features in relation to dynamical mass generation and symmetry breaking for the recently proposed holomorphic supersymmetric Nambu--Jona-Lasinio model. The basic model has two different chiral superfields (multiplets) with a
We derive the critical temperature in a nonlocal Nambu-Jona-Lasinio model with the presence of a chiral chemical potential. The model we consider uses a form factor derived from recent studies of the gluon propagator in Yang-Mills theory and has the