ترغب بنشر مسار تعليمي؟ اضغط هنا

The generalized Ermakov conservative system: A discussion

59   0   0.0 ( 0 )
 نشر من قبل Antonios Mitsopoulos Dr
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using older and recent results on the integrability of two-dimensional (2d) dynamical systems, we prove that the results obtained in a recent publication concerning the 2d generalized Ermakov system can be obtained as special cases of a more general approach. This approach is geometric and can be used to study efficiently similar dynamical systems.



قيم البحث

اقرأ أيضاً

The Racah algebra $R(n)$ of rank $(n-2)$ is obtained as the commutant of the mbox{$mathfrak{o}(2)^{oplus n}$} subalgebra of $mathfrak{o}(2n)$ in oscillator representations of the universal algebra of $mathfrak{o}(2n)$. This result is shown to be rela ted in a Howe duality context to the definition of $R(n)$ as the algebra of Casimir operators arising in recouplings of $n$ copies of $mathfrak{su}(1,1)$. These observations provide a natural framework to carry out the derivation by dimensional reduction of the generic superintegrable model on the $(n-1)$ sphere which is invariant under $R(n)$.
We consider the generic quadratic first integral (QFI) of the form $I=K_{ab}(t,q)dot{q}^{a}dot{q}^{b}+K_{a}(t,q)dot{q}^{a}+K(t,q)$ and require the condition $dI/dt=0$. The latter results in a system of partial differential equations which involve the tensors $K_{ab}(t,q)$, $K_{a}(t,q)$, $K(t,q)$ and the dynamical quantities of the dynamical equations. These equations divide in two sets. The first set involves only geometric quantities of the configuration space and the second set contains the interaction of these quantities with the dynamical fields. A theorem is presented which provides a systematic solution of the system of equations in terms of the collineations of the kinetic metric in the configuration space. This solution being geometric and covariant, applies to higher dimensions and curved spaces. The results are applied to the simple but interesting case of two-dimensional (2d) autonomous conservative Newtonian potentials. It is found that there are two classes of 2d integrable potentials and that superintegrable potentials exist in both classes. We recover most main previous results, which have been obtained by various methods, in a single and systematic way.
The newest model for space-time is based on sub-Riemannian geometry. In this paper, we use a combination of Lorentzian and sub-Riemannian geometry, the suggest a new model which likes to its ancestors, but with the most efficient in application. In c ontinuation, we try to show a new connection which calls generalized connection, and prove some its properties.
173 - Jinpeng An , Zhengdong Wang 2005
In this paper we present a criterion for the covering condition of the generalized random matrix ensemble, which enable us to verify the covering condition for the seven classes of generalized random matrix ensemble in an unified and simpler way.
149 - I.V. Tyutin , B.L. Voronov 2013
This paper is a natural continuation of the previous paper cite{TyuVo13} where generalized oscillator representations for Calogero Hamiltonians with potential $V(x)=alpha/x^2$, $alphageq-1/4$, were constructed. In this paper, we present generalized o scillator representations for all generalized Calogero Hamiltonians with potential $V(x)=g_{1}/x^2+g_{2}x^2$, $g_{1}geq-1/4$, $g_{2}>0$. These representations are generally highly nonunique, but there exists an optimum representation for each Hamiltonian, representation that explicitly determines the ground state and the ground-state energy. For generalized Calogero Hamiltonians with coupling constants $g_1<-1/4$ or $g_2<0$, generalized oscillator representations do not exist in agreement with the fact that the respective Hamiltonians are not bounded from below.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا