ﻻ يوجد ملخص باللغة العربية
These are the lecture notes of an introductory course on ordinal analysis. Our selection of topics is guided by the aim to give a complete and direct proof of a mathematical independence result: Kruskals theorem for binary trees is unprovable in conservative extensions of Peano arithmetic (note that much stronger results of this type are due to Harvey Friedman). Concerning prerequisites, we assume a solid introduction to mathematical logic but no specialized knowledge of proof theory. The material in these notes is intended for 14 lectures and 7 exercise sessions of 90 minutes each.
For every partial combinatory algebra (pca), we define a hierarchy of extensionality relations using ordinals. We investigate the closure ordinals of pcas, i.e. the smallest ordinals where these relations become equal. We show that the closure ordina
Ramseys theorem for pairs asserts that every 2-coloring of the pairs of integers has an infinite monochromatic subset. In this paper, we study a strengthening of Ramseys theorem for pairs due to Erdos and Rado, which states that every 2-coloring of t
This is a set of 288 questions written for a Moore-style course in Mathematical Logic. I have used these (or some variation) four times in a beginning graduate course. Topics covered are: propositional logic axioms of ZFC wellorderings and equi
Using the tools of reverse mathematics in second-order arithmetic, as developed by Friedman, Simpson, and others, we determine the axioms necessary to develop various topics in commutative ring theory. Our main contributions to the field are as follo
We present three ordinal notation systems representing ordinals below $varepsilon_0$ in type theory, using recent type-theoretical innovations such as mutual inductive-inductive definitions and higher inductive types. We show how ordinal arithmetic c