ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring sloshing, merging and feedback velocities in the Virgo cluster

108   0   0.0 ( 0 )
 نشر من قبل Efrain Gatuzz
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed analysis of the velocity structure of the Virgo cluster using {it XMM-Newton} observations. Using a novel technique which uses uses the Cu K$alpha$ instrumental line to calibrate the EPIC-pn energy scale, we are able to obtain velocity measurements with uncertainties down to $Delta v sim 100$ km/s. We created 2D projected maps for the velocity, temperature, metallicity, density, pressure and entropy with an spatial resolution of 0.25$$. We have found that in the innermost gas there is a high velocity structure, most likely indicating the presence of an outflow from the AGN while our analysis of the cluster cool core using RGS data indicates that the velocity of the gas agrees with the M87 optical redshift. An overall gradient in the velocity is seen, with larger values as we move away from the cluster core. The hot gas located within the western radio flow is redshifted, moving with a velocity $sim 331$ km/s while the hot gas located within the eastern radio flow is blueshifted, with a velocity $sim 258$ km/s, suggesting the presence of backflows. Our results reveal the effects of both AGN outflows and gas sloshing, in the complex velocity field of the Virgo cluster.



قيم البحث

اقرأ أيضاً

We present results from GMRT and Chandra observations of the NGC 1550 galaxy group. Although previously thought of as relaxed, we show evidence that gas sloshing and active galactic nucleus (AGN) heating have affected the structure of the system. The 610 and 235 MHz radio images show an asymmetric jet-lobe structure with a total size of $sim$33 kpc, with a sharp kink at the base of the more extended western jet, and bending of the shorter eastern jet as it enters the lobe. The 235$-$610 MHz spectral index map shows that both radio lobes have steep spectral indices ($alpha_{235}^{610}geq-1.5$) indicating the presence of an old electron population. The X-ray images reveal an asymmetric structure in the hot gas correlated with the radio structure, as well as potential cavities coincident with the radio lobes, with rims and arms of gas that may have been uplifted by the cavity expansion. The X-ray residual map reveals an arc shaped structure to the east that resembles a sloshing cold front. Radio spectral analysis suggests a radiative age of about 33 Myr for the source, comparable to the sloshing timescale and dynamical estimates of the age of the lobes. An estimate of the mechanical energy required to inflate the cavities suggests that the AGN of NGC 1550 is capable of balancing radiative losses from the intragroup medium (IGM) and preventing excessive cooling, providing that the AGN jets are efficiently coupled to the IGM gas. In conclusion, we find evidence of sloshing motions from both radio and X-ray structures, suggesting that NGC 1550 was perturbed by a minor merger or infalling galaxy about 33 Myr ago.
378 - E. Roediger 2012
Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing. Their detailed structure depends on the properties of the intra-cluster medium (ICM): hydrodynamical simulations predict the CFs to be distorted by Kelvin-Helmholtz instabilit ies (KHIs), but aligned magnetic fields, viscosity, or thermal conduction can suppress the KHIs. Thus, observing the detailed structure of sloshing CFs can be used to constrain these ICM properties. Both smooth and distorted sloshing CFs have been observed, indicating that the KHI is suppressed in some clusters, but not in all. Consequently, we need to address at least some sloshing clusters individually before drawing general conclusions about the ICM properties. We present the first detailed attempt to constrain the ICM properties in a specific cluster from the structure of its sloshing CF. Proximity and brightness make the Virgo cluster an ideal target. We combine observations and Virgo-specific hydrodynamical sloshing simulations. Here we focus on a Spitzer-like temperature dependent viscosity as a mechanism to suppress the KHI, but discuss the alternative mechanisms in detail. We identify the CF at 90 kpc north and north-east of the Virgo center as the best location in the cluster to observe a possible KHI suppression. For viscosities $gtrsim$ 10% of the Spitzer value KHIs at this CF are suppressed. We describe in detail the observable signatures at low and high viscosities, i.e. in the presence or absence of KHIs. We find indications for a low ICM viscosity in archival XMM-Newton data and demonstrate the detectability of the predicted features in deep Chandra observations.
This paper presents the analysis of a combined 134 ks {it Chandra} data of a peculiar galaxy cluster Abell 2626. This study confirms the earlier detection of the east cavity at $sim$13 kpc and reports detection of a new cavity at $sim$39 kpc on the w est of the X-ray peak. The average mechanical power injected by the AGN outburst ${rm P_{cav} sim 6.6 times 10^{44}, erg, s^{-1}}$ is $sim$29 times more than required to compensate the cooling luminosity ${rm L_{cool} = 2.30 pm 0.02 times 10^{43} {rm~erg s}^{-1}}$. The edges in the SB on the west and south-west at $sim$36 kpc and 33 kpc, respectively, have the gas compressions of 1.57$pm$0.08 and 2.06$pm$0.44 and are spatially associated with the arcs in the temperature and metallicity maps due to the merging cold fronts. The systematic study of the nuclear sources exhibited dramatic changes over the span of ten years. The NE source that emitted mostly in the soft band in the past disappeared in the recent observations. Instead, an excess emission was seen at $2.2$ on its west and required an unrealistic line of sight velocity of $sim$ $675times{}c$ if is due to its movement. The count rate analysis and spectral analysis exhibited a change in the state of the SW source from a soft state to the hard due to the change in the mass accretion rate. No such spectral change was noticed for the NE source.
208 - M. Baes , D. Herranz , S. Bianchi 2014
We cross-correlate the Planck Catalogue of Compact Sources (PCCS) with the fully sampled 84 deg2 Herschel Virgo Cluster Survey (HeViCS) fields. We search for and identify the 857 and 545 GHz PCCS sources in the HeViCS fields by studying their FIR/sub mm and optical counterparts. We find 84 and 48 compact Planck sources in the HeViCS fields at 857 and 545 GHz, respectively. Almost all sources correspond to individual bright Virgo Cluster galaxies. The vast majority of the Planck detected galaxies are late-type spirals, with the Sc class dominating the numbers, while early-type galaxies are virtually absent from the sample, especially at 545 GHz. We compare the HeViCS SPIRE flux densities for the detected galaxies with the four different PCCS flux density estimators and find an excellent correlation with the aperture photometry flux densities, even at the highest flux density levels. We find only seven PCCS sources in the HeViCS fields without a nearby galaxy as obvious counterpart, and conclude that all of these are dominated by Galactic cirrus features or are spurious detections. No Planck sources in the HeViCS fields seem to be associated to high-redshift proto-clusters of dusty galaxies or strongly lensed submm sources. Finally, our study is the first empirical confirmation of the simulation-based estimated completeness of the PCCS, and provides a strong support of the internal PCCS validation procedure.
Previous studies have shown that CIZA J2242.8+5301 (the Sausage cluster, $z=0.192$) is a massive merging galaxy cluster that hosts a radio halo and multiple relics. In this paper we present deep, high fidelity, low-frequency images made with the LOw- Frequency Array (LOFAR) between 115.5 and 179 MHz. These images, with a noise of 140 mJy/beam and a resolution of $theta_{text{beam}}=7.3times5.3$, are an order of magnitude more sensitive and five times higher resolution than previous low-frequency images of this cluster. We combined the LOFAR data with the existing GMRT (153, 323, 608 MHz) and WSRT (1.2, 1.4, 1.7, 2.3 GHz) data to study the spectral properties of the radio emission from the cluster. Assuming diffusive shock acceleration (DSA), we found Mach numbers of $mathcal{M}_{n}=2.7{}_{-0.3}^{+0.6}$ and $mathcal{M}_{s}=1.9_{-0.2}^{+0.3}$ for the northern and southern shocks. The derived Mach number for the northern shock requires an acceleration efficiency of several percent to accelerate electrons from the thermal pool, which is challenging for DSA. Using the radio data, we characterised the eastern relic as a shock wave propagating outwards with a Mach number of $mathcal{M}_{e}=2.4_{-0.3}^{+0.5}$, which is in agreement with $mathcal{M}_{e}^{X}=2.5{}_{-0.2}^{+0.6}$ that we derived from Suzaku data. The eastern shock is likely to be associated with the major cluster merger. The radio halo was measured with a flux of $346pm64,text{mJy}$ at $145,text{MHz}$. Across the halo, we observed a spectral index that remains approximately constant ($alpha^{text{145 MHz-2.3 GHz}}_{text{across (sim)1 Mpc}^2}=-1.01pm0.10$) after the steepening in the post-shock region of the northern relic. This suggests a generation of post-shock turbulence that re-energies aged electrons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا