ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-Target Real-Time Passive WiFi Tracking

365   0   0.0 ( 0 )
 نشر من قبل Zhongqin Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Device-free human tracking is an essential ingredient for ubiquitous wireless sensing. Recent passive WiFi tracking systems face the challenges of inaccurate separation of dynamic human components and time-consuming estimation of multi-dimensional signal parameters. In this work, we present a scheme named WiFi Doppler Frequency Shift (WiDFS), which can achieve single-target real-time passive tracking using channel state information (CSI) collected from commercial-off-the-shelf (COTS) WiFi devices. We consider the typical system setup including a transmitter with a single antenna and a receiver with three antennas; while our scheme can be readily extended to another setup. To remove the impact of transceiver asynchronization, we first apply CSI cross-correlation between each RX antenna pair. We then combine them to estimate a Doppler frequency shift (DFS) in a short-time window. After that, we leverage the DFS estimate to separate dynamic human components from CSI self-correlation terms of each antenna, thereby separately calculating angle-of-arrival (AoA) and human reflection distance for tracking. In addition, a hardware calibration algorithm is presented to refine the spacing between RX antennas and eliminate the hardware-related phase differences between them. A prototype demonstrates that WiDFS can achieve real-time tracking with a median position error of 72.32 cm in multipath-rich environments.



قيم البحث

اقرأ أيضاً

We introduce WiCluster, a new machine learning (ML) approach for passive indoor positioning using radio frequency (RF) channel state information (CSI). WiCluster can predict both a zone-level position and a precise 2D or 3D position, without using an y precise position labels during training. Prior CSI-based indoor positioning work has relied on non-parametric approaches using digital signal-processing (DSP) and, more recently, parametric approaches (e.g., fully supervised ML methods). However these do not handle the complexity of real-world environments well and do not meet requirements for large-scale commercial deployments: the accuracy of DSP-based method deteriorates significantly in non-line-of-sight conditions, while supervised ML methods need large amounts of hard-to-acquire centimeter accuracy position labels. In contrast, WiCluster is both precise and requires weaker label-information that can be easily collected. Our first contribution is a novel dimensionality reduction method for charting. It combines a triplet-loss with a multi-scale clustering-loss to map the high-dimensional CSI representation to a 2D/3D latent space. Our second contribution is two weakly supervised losses that map this latent space into a Cartesian map, resulting in meter-accuracy position results. These losses only require simple to acquire priors: a sketch of the floorplan, approximate location of access-point locations and a few CSI packets that are labeled with the corresponding zone in the floorplan. Thirdly, we report results and a robustness study for 2D positioning in a single-floor office building and 3D positioning in a two-floor home to show the robustness of our method.
Prior correlation filter (CF)-based tracking methods for unmanned aerial vehicles (UAVs) have virtually focused on tracking in the daytime. However, when the night falls, the trackers will encounter more harsh scenes, which can easily lead to trackin g failure. In this regard, this work proposes a novel tracker with anti-dark function (ADTrack). The proposed method integrates an efficient and effective low-light image enhancer into a CF-based tracker. Besides, a target-aware mask is simultaneously generated by virtue of image illumination variation. The target-aware mask can be applied to jointly train a target-focused filter that assists the context filter for robust tracking. Specifically, ADTrack adopts dual regression, where the context filter and the target-focused filter restrict each other for dual filter learning. Exhaustive experiments are conducted on typical dark sceneries benchmark, consisting of 37 typical night sequences from authoritative benchmarks, i.e., UAVDark, and our newly constructed benchmark UAVDark70. The results have shown that ADTrack favorably outperforms other state-of-the-art trackers and achieves a real-time speed of 34 frames/s on a single CPU, greatly extending robust UAV tracking to night scenes.
This article presents a semantic tracker which simultaneously tracks a single target and recognises its category. In general, it is hard to design a tracking model suitable for all object categories, e.g., a rigid tracker for a car is not suitable fo r a deformable gymnast. Category-based trackers usually achieve superior tracking performance for the objects of that specific category, but have difficulties being generalised. Therefore, we propose a novel unified robust tracking framework which explicitly encodes both generic features and category-based features. The tracker consists of a shared convolutional network (NetS), which feeds into two parallel networks, NetC for classification and NetT for tracking. NetS is pre-trained on ImageNet to serve as a generic feature extractor across the different object categories for NetC and NetT. NetC utilises those features within fully connected layers to classify the object category. NetT has multiple branches, corresponding to multiple categories, to distinguish the tracked object from the background. Since each branch in NetT is trained by the videos of a specific category or groups of similar categories, NetT encodes category-based features for tracking. During online tracking, NetC and NetT jointly determine the target regions with the right category and foreground labels for target estimation. To improve the robustness and precision, NetC and NetT inter-supervise each other and trigger network adaptation when their outputs are ambiguous for the same image regions (i.e., when the category label contradicts the foreground/background classification). We have compared the performance of our tracker to other state-of-the-art trackers on a large-scale tracking benchmark (100 sequences)---the obtained results demonstrate the effectiveness of our proposed tracker as it outperformed other 38 state-of-the-art tracking algorithms.
This paper describes a novel approach in human robot interaction driven by ergonomics. With a clear focus on optimising ergonomics, the approach proposed here continuously observes a human users posture and by invoking appropriate cooperative robot m ovements, the users posture is, whenever required, brought back to an ergonomic optimum. Effectively, the new protocol optimises the human-robot relative position and orientation as a function of human ergonomics. An RGB-D camera is used to calculate and monitor human joint angles in real-time and to determine the current ergonomics state. A total of 6 main causes of low ergonomic states are identified, leading to 6 universal robot responses to allow the human to return to an optimal ergonomics state. The algorithmic framework identifies these 6 causes and controls the cooperating robot to always adapt the environment (e.g. change the pose of the workpiece) in a way that is ergonomically most comfortable for the interacting user. Hence, human-robot interaction is continuously re-evaluated optimizing ergonomics states. The approach is validated through an experimental study, based on established ergonomic methods and their adaptation for real-time application. The study confirms improved ergonomics using the new approach.
We study six months of human mobility data, including WiFi and GPS traces recorded with high temporal resolution, and find that time series of WiFi scans contain a strong latent location signal. In fact, due to inherent stability and low entropy of h uman mobility, it is possible to assign location to WiFi access points based on a very small number of GPS samples and then use these access points as location beacons. Using just one GPS observation per day per person allows us to estimate the location of, and subsequently use, WiFi access points to account for 80% of mobility across a population. These results reveal a great opportunity for using ubiquitous WiFi routers for high-resolution outdoor positioning, but also significant privacy implications of such side-channel location tracking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا