ﻻ يوجد ملخص باللغة العربية
Light axion-like particles (ALPs) are expected to be abundantly produced in core-collapse supernovae (CCSNe), resulting in a $sim$10-second long burst of ALPs. These particles subsequently undergo conversion into gamma-rays in external magnetic fields to produce a long gamma-ray burst (GRB) with a characteristic spectrum peaking in the 30--100-MeV energy range. At the same time, CCSNe are invoked as progenitors of {it ordinary} long GRBs, rendering it relevant to conduct a comprehensive search for ALP spectral signatures using the observations of long GRB with the textit{Fermi} Large Area Telescope (LAT). We perform a data-driven sensitivity analysis to determine CCSN distances for which a detection of an ALP signal is possible with the LATs low-energy (LLE) technique which, in contrast to the standard LAT analysis, allows for a a larger effective area for energies down to 30~MeV. Assuming an ALP mass $m_a lesssim 10^{-10}$~eV and ALP-photon coupling $g_{agamma} = 5.3times 10^{-12}$ GeV$^{-1}$, values considered and deduced in ALP searches from SN1987A, we find that the distance limit ranges from $sim!0.5$ to $sim!10$~Mpc, depending on the sky location and the CCSN progenitor mass. Furthermore, we select a candidate sample of twenty-four GRBs and carry out a model comparison analysis in which we consider different GRB spectral models with and without an ALP signal component. We find that the inclusion of an ALP contribution does not result in any statistically significant improvement of the fits to the data. We discuss the statistical method used in our analysis and the underlying physical assumptions, the feasibility of setting upper limits on the ALP-photon coupling, and give an outlook on future telescopes in the context of ALP searches.
During a core-collapse supernova (SN), axion-like particles (ALPs) could be produced through the Primakoff process and subsequently convert into gamma rays in the magnetic field of the Milky Way. Using a sample of well studied extragalactic SNe at op
Heavy axion-like particles (ALPs), with masses $m_a gtrsim 100$ keV, coupled with photons, would be copiously produced in a supernova (SN) core via Primakoff process and photon coalescence. Using a state-of-the-art SN model, we revisit the energy-los
We present 3D full-sphere supernova simulations of non-rotating low-mass (~9 Msun) progenitors, covering the entire evolution from core collapse through bounce and shock revival, through shock breakout from the stellar surface, until fallback is comp
Context. Transient neutrino sources such as Gamma-Ray Bursts (GRBs) and Supernovae (SNe) are hypothesized to emit bursts of high-energy neutrinos on a time-scale of lesssim 100 s. While GRB neutrinos would be produced in high relativistic jets, core-
The high-energy Universe is potentially a great laboratory for searching new light bosons such as axion-like particles (ALPs). Cosmic sources are indeed the scene of violent phenomena that involve strong magnetic field and/or very long baselines, whe