ﻻ يوجد ملخص باللغة العربية
For a smooth projective variety $X$ of dimension $2n-1$, Zhao defined topological Abel-Jacobi map, which sends vanishing cycles on a smooth hyperplane section $Y$ of $X$ to the middle dimensional primitive intermediate Jacobian of $X$. When the vanishing cycles are algebraic, it agrees with Griffiths Abel-Jacobi map. On the other hand, Schnell defined a topological Abel-Jacobi map using the $mathbb R$-splitting property of the mixed Hodge structure on $H^{2n-1}(Xsetminus Y)$. We show that the two definitions coincide, which answers a question of Schnell.
We construct a map between Blochs higher Chow groups and Deligne homology for smooth, complex quasiprojective varieties on the level of complexes. For complex projective varieties this results in a formula which generalizes at the same time the class
As an application of the theory of Lawson homology and morphic cohomology, Walker proved that the Abel-Jacobi map factors through another regular homomorphism. In this note, we give a direct proof of the theorem.
In this article we are interested in morphisms without slope for mixed Hodge modules. We first show the commutativity of iterated nearby cycles and vanishing cycles applied to a mixed Hodge module in the case of a morphism without slope. Then we defi
The main problem addressed in the paper is the Torelli problem for n-dimensional varieties of general type, more specifically for varieties with ample canonical bundle. It asks under which geometrical condition for a variety the period map for the Ho
We calculate the E-polynomials of certain twisted GL(n,C)-character varieties M_n of Riemann surfaces by counting points over finite fields using the character table of the finite group of Lie-type GL(n,F_q) and a theorem proved in the appendix by N.