ترغب بنشر مسار تعليمي؟ اضغط هنا

MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

112   0   0.0 ( 0 )
 نشر من قبل Xinyin Ma
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Entity retrieval, which aims at disambiguating mentions to canonical entities from massive KBs, is essential for many tasks in natural language processing. Recent progress in entity retrieval shows that the dual-encoder structure is a powerful and efficient framework to nominate candidates if entities are only identified by descriptions. However, they ignore the property that meanings of entity mentions diverge in different contexts and are related to various portions of descriptions, which are treated equally in previous works. In this work, we propose Multi-View Entity Representations (MuVER), a novel approach for entity retrieval that constructs multi-view representations for entity descriptions and approximates the optimal view for mentions via a heuristic searching method. Our method achieves the state-of-the-art performance on ZESHEL and improves the quality of candidates on three standard Entity Linking datasets



قيم البحث

اقرأ أيضاً

Entity linking -- the task of identifying references in free text to relevant knowledge base representations -- often focuses on single languages. We consider multilingual entity linking, where a single model is trained to link references to same-lan guage knowledge bases in several languages. We propose a neural ranker architecture, which leverages multilingual transformer representations of text to be easily applied to a multilingual setting. We then explore how a neural ranker trained in one language (e.g. English) transfers to an unseen language (e.g. Chinese), and find that while there is a consistent but not large drop in performance. How can this drop in performance be alleviated? We explore adding an adversarial objective to force our model to learn language-invariant representations. We find that using this approach improves recall in several datasets, often matching the in-language performance, thus alleviating some of the performance loss occurring from zero-shot transfer.
Entity representations are useful in natural language tasks involving entities. In this paper, we propose new pretrained contextualized representations of words and entities based on the bidirectional transformer. The proposed model treats words and entities in a given text as independent tokens, and outputs contextualized representations of them. Our model is trained using a new pretraining task based on the masked language model of BERT. The task involves predicting randomly masked words and entities in a large entity-annotated corpus retrieved from Wikipedia. We also propose an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer, and considers the types of tokens (words or entities) when computing attention scores. The proposed model achieves impressive empirical performance on a wide range of entity-related tasks. In particular, it obtains state-of-the-art results on five well-known datasets: Open Entity (entity typing), TACRED (relation classification), CoNLL-2003 (named entity recognition), ReCoRD (cloze-style question answering), and SQuAD 1.1 (extractive question answering). Our source code and pretrained representations are available at https://github.com/studio-ousia/luke.
The increasing amount of data on the Web, in particular of Linked Data, has led to a diverse landscape of datasets, which make entity retrieval a challenging task. Explicit cross-dataset links, for instance to indicate co-references or related entiti es can significantly improve entity retrieval. However, only a small fraction of entities are interlinked through explicit statements. In this paper, we propose a two-fold entity retrieval approach. In a first, offline preprocessing step, we cluster entities based on the emph{x--means} and emph{spectral} clustering algorithms. In the second step, we propose an optimized retrieval model which takes advantage of our precomputed clusters. For a given set of entities retrieved by the BM25F retrieval approach and a given user query, we further expand the result set with relevant entities by considering features of the queries, entities and the precomputed clusters. Finally, we re-rank the expanded result set with respect to the relevance to the query. We perform a thorough experimental evaluation on the Billions Triple Challenge (BTC12) dataset. The proposed approach shows significant improvements compared to the baseline and state of the art approaches.
Biomedical Named Entity Recognition (BioNER) is a crucial step for analyzing Biomedical texts, which aims at extracting biomedical named entities from a given text. Different supervised machine learning algorithms have been applied for BioNER by vari ous researchers. The main requirement of these approaches is an annotated dataset used for learning the parameters of machine learning algorithms. Segment Representation (SR) models comprise of different tag sets used for representing the annotated data, such as IOB2, IOE2 and IOBES. In this paper, we propose an extension of IOBES model to improve the performance of BioNER. The proposed SR model, FROBES, improves the representation of multi-word entities. We used Bidirectional Long Short-Term Memory (BiLSTM) network; an instance of Recurrent Neural Networks (RNN), to design a baseline system for BioNER and evaluated the new SR model on two datasets, i2b2/VA 2010 challenge dataset and JNLPBA 2004 shared task dataset. The proposed SR model outperforms other models for multi-word entities with length greater than two. Further, the outputs of different SR models have been combined using majority voting ensemble method which outperforms the baseline models performance.
Existing state of the art neural entity linking models employ attention-based bag-of-words context model and pre-trained entity embeddings bootstrapped from word embeddings to assess topic level context compatibility. However, the latent entity type information in the immediate context of the mention is neglected, which causes the models often link mentions to incorrect entities with incorrect type. To tackle this problem, we propose to inject latent entity type information into the entity embeddings based on pre-trained BERT. In addition, we integrate a BERT-based entity similarity score into the local context model of a state-of-the-art model to better capture latent entity type information. Our model significantly outperforms the state-of-the-art entity linking models on standard benchmark (AIDA-CoNLL). Detailed experiment analysis demonstrates that our model corrects most of the type errors produced by the direct baseline.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا