ترغب بنشر مسار تعليمي؟ اضغط هنا

Single-photon-triggered spin squeezing with decoherence reduction in optomechanics via phase matching

132   0   0.0 ( 0 )
 نشر من قبل Zhucheng Zhang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum spin squeezing is an important resource for quantum information processing, but its squeezing degree is not easy to preserve in an open system with decoherence. Here, we propose a scheme to implement single-photon-triggered spin squeezing with decoherence reduction in an open system. In our system, a Dicke model (DM) is introduced into the quadratic optomechanics, which can be equivalent to an effective DM manipulated by the photon number. Besides, the phonon mode of the optomechanical system is coupled to a squeezed vacuum reservoir with a phase matching, resulting in that the thermal noise caused by the environment can be suppressed completely. We show that squeezing of the phonon mode triggered by a single photon can be transferred to the spin ensemble totally, and pairwise entanglement of the spin ensemble can be realized if and only if there is spin squeezing. Importantly, when considering the impact of the environment, our system can obtain a better squeezing degree than the optimal squeezing that can be achieved in the traditional DM. Meanwhile, the spin squeezing generated in our system is immune to the thermal noise. This work offers an effective way to generate spin squeezing with a single photon and to reduce decoherence in an open system, which will have promising applications in quantum information processing.

قيم البحث

اقرأ أيضاً

We study the generation of spin-squeezing in arrays of long-lived dipoles subject to collective emission, coherent drive, elastic interactions, and spontaneous emission. Counter-intuitively, it is found that the introduction of spontaneous emission l eads to an enhancement of the achievable spin-squeezing, relative to that which emerges in the steady-state of the purely collective dynamics for the same model parameters. This behavior is connected to the dynamical self-tuning of the system through a dissipative phase transition that is present in the collective system alone. Our findings will be applicable to next-generation quantum sensors harnessing correlated quantum matter, including cavity-QED and trapped ion systems.
Non-Gaussian states, and specifically the paradigmatic Schrodinger cat state, are well-known to be very sensitive to losses. When propagating through damping channels, these states quickly loose their non-classical features and the associated negativ e oscillations of their Wigner function. However, by squeezing the superposition states, the decoherence process can be qualitatively changed and substantially slowed down. Here, as a first example, we experimentally observe the reduced decoherence of squeezed optical coherent-state superpositions through a lossy channel. To quantify the robustness of states, we introduce a combination of a decaying value and a rate-of-decay of the Wigner function negativity. This work, which uses squeezing as an ancillary Gaussian resource, opens new possibilities to protect and manipulate quantum superpositions in phase space.
Accessing distinctly quantum aspects of the interaction between light and the position of a mechanical object has been an outstanding challenge to cavity-optomechanical systems. Only cold-atom implementations of cavity optomechanics have indicated ef fects of the quantum fluctuations in the optical radiation pressure force. Here we use such a system, in which quantum photon-number fluctuations significantly drive the center of mass of an atomic ensemble inside a Fabry-Perot cavity. We show that the optomechanical response both amplifies and ponderomotively squeezes the quantum light field. We also demonstrate that classical optical fluctuations can be attenuated by 26 dB or amplified by 20 dB with a weak input pump power of < 40 pW, and characterize the optomechanical amplifiers frequency-dependent gain and phase response in both the amplitude and phase-modulation quadratures.
We give a theoretical description of a coherently driven opto-mechanical system with a single added photon. The photon source is modeled as a cavity which initially contains one photon and which is irreversibly coupled to the opto-mechanical system. We show that the probability for the additional photon to be emitted by the opto-mechanical cavity will exhibit oscillations under a Lorentzian envelope, when the driven interaction with the mechanical resonator is strong enough. Our scheme provides a feasible route towards quantum state transfer between optical photons and micromechanical resonators.
Quantum walks have a host of applications, ranging from quantum computing to the simulation of biological systems. We present an intrinsically stable, deterministic implementation of discrete quantum walks with single photons in space. The number of optical elements required scales linearly with the number of steps. We measure walks with up to 6 steps and explore the quantum-to-classical transition by introducing tunable decoherence. Finally, we also investigate the effect of absorbing boundaries and show that decoherence significantly affects the probability of absorption.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا