ﻻ يوجد ملخص باللغة العربية
Quantum spin squeezing is an important resource for quantum information processing, but its squeezing degree is not easy to preserve in an open system with decoherence. Here, we propose a scheme to implement single-photon-triggered spin squeezing with decoherence reduction in an open system. In our system, a Dicke model (DM) is introduced into the quadratic optomechanics, which can be equivalent to an effective DM manipulated by the photon number. Besides, the phonon mode of the optomechanical system is coupled to a squeezed vacuum reservoir with a phase matching, resulting in that the thermal noise caused by the environment can be suppressed completely. We show that squeezing of the phonon mode triggered by a single photon can be transferred to the spin ensemble totally, and pairwise entanglement of the spin ensemble can be realized if and only if there is spin squeezing. Importantly, when considering the impact of the environment, our system can obtain a better squeezing degree than the optimal squeezing that can be achieved in the traditional DM. Meanwhile, the spin squeezing generated in our system is immune to the thermal noise. This work offers an effective way to generate spin squeezing with a single photon and to reduce decoherence in an open system, which will have promising applications in quantum information processing.
We study the generation of spin-squeezing in arrays of long-lived dipoles subject to collective emission, coherent drive, elastic interactions, and spontaneous emission. Counter-intuitively, it is found that the introduction of spontaneous emission l
Non-Gaussian states, and specifically the paradigmatic Schrodinger cat state, are well-known to be very sensitive to losses. When propagating through damping channels, these states quickly loose their non-classical features and the associated negativ
Accessing distinctly quantum aspects of the interaction between light and the position of a mechanical object has been an outstanding challenge to cavity-optomechanical systems. Only cold-atom implementations of cavity optomechanics have indicated ef
We give a theoretical description of a coherently driven opto-mechanical system with a single added photon. The photon source is modeled as a cavity which initially contains one photon and which is irreversibly coupled to the opto-mechanical system.
Quantum walks have a host of applications, ranging from quantum computing to the simulation of biological systems. We present an intrinsically stable, deterministic implementation of discrete quantum walks with single photons in space. The number of