ﻻ يوجد ملخص باللغة العربية
Causal models with unobserved variables impose nontrivial constraints on the distributions over the observed variables. When a common cause of two variables is unobserved, it is impossible to uncover the causal relation between them without making additional assumptions about the model. In this work, we consider causal models with a promise that unobserved variables have known cardinalities. We derive inequality constraints implied by d-separation in such models. Moreover, we explore the possibility of leveraging this result to study causal influence in models that involve quantum systems.
Directed graphical models specify noisy functional relationships among a collection of random variables. In the Gaussian case, each such model corresponds to a semi-algebraic set of positive definite covariance matrices. The set is given via parametr
We consider a bivariate time series $(X_t,Y_t)$ that is given by a simple linear autoregressive model. Assuming that the equations describing each variable as a linear combination of past values are considered structural equations, there is a clear m
We develop $D$-optimal designs for linear models with first-order interactions on a subset of the $2^K$ full factorial design region, when both the number of factors set to the higher level and the number of factors set to the lower level are simulta
We introduce estimation and test procedures through divergence minimization for models satisfying linear constraints with unknown parameter. Several statistical examples and motivations are given. These procedures extend the empirical likelihood (EL)
Classical least squares estimators are well-known to be robust with respect to moment assumptions concerning the error distribution in a wide variety of finite-dimensional statistical problems; generally only a second moment assumption is required fo