ﻻ يوجد ملخص باللغة العربية
The measurement of transient optical fields has proven critical to understanding the dynamical mechanisms underlying ultrafast physical and chemical phenomena, and is key to realizing higher speeds in electronics and telecommunications. Complete characterization of optical waveforms, however, requires an optical oscilloscope capable of resolving the electric field oscillations with sub-femtosecond resolution and with single-shot operation. Here, we show that strong-field nonlinear excitation of photocurrents in a silicon-based image sensor chip can provide the sub-cycle optical gate necessary to characterize carrier-envelope phase-stable optical waveforms in the mid-infrared. By mapping the temporal delay between an intense excitation and weak perturbing pulse onto a transverse spatial coordinate of the image sensor, we show that the technique allows single-shot measurement of few-cycle waveforms.
Photonic methods of radio-frequency waveform generation and processing provide performance and flexibility over electronic methods due to the ultrawide bandwidth offered by the optical carriers. However, they suffer from lack of integration and slow
Single-cycle optical pulses with a controlled electromagnetic waveform allow to steer the motion of low-energy electrons in atoms, molecules, nanostructures or condensed-matter on attosecond dimensions in time. However, high-energy electrons under si
Here we report the first experimental demonstration of light trapping by a refractive index front in a silicon waveguide, the optical push broom effect. The front generated by a fast pump pulse collects and traps the energy of a CW signal with smalle
Optical orbital angular momentum (OAM) provides an additional dimension for photons to carry information in high-capacity optical communication. Although the practical needs have intrigued the generations of miniaturized devices to manipulate the OAM
We present the first demonstration of all-optical squeezing in an on-chip monolithically integrated CMOS-compatible platform. Our device consists of a low loss silicon nitride microring optical parametric oscillator (OPO) with a gigahertz cavity line