ﻻ يوجد ملخص باللغة العربية
3D scene understanding from point clouds plays a vital role for various robotic applications. Unfortunately, current state-of-the-art methods use separate neural networks for different tasks like object detection or room layout estimation. Such a scheme has two limitations: 1) Storing and running several networks for different tasks are expensive for typical robotic platforms. 2) The intrinsic structure of separate outputs are ignored and potentially violated. To this end, we propose the first transformer architecture that predicts 3D objects and layouts simultaneously, using point cloud inputs. Unlike existing methods that either estimate layout keypoints or edges, we directly parameterize room layout as a set of quads. As such, the proposed architecture is termed as P(oint)Q(uad)-Transformer. Along with the novel quad representation, we propose a tailored physical constraint loss function that discourages object-layout interference. The quantitative and qualitative evaluations on the public benchmark ScanNet show that the proposed PQ-Transformer succeeds to jointly parse 3D objects and layouts, running at a quasi-real-time (8.91 FPS) rate without efficiency-oriented optimization. Moreover, the new physical constraint loss can improve strong baselines, and the F1-score of the room layout is significantly promoted from 37.9% to 57.9%.
We develop new representations and algorithms for three-dimensional (3D) object detection and spatial layout prediction in cluttered indoor scenes. We first propose a clouds of oriented gradient (COG) descriptor that links the 2D appearance and 3D po
3D single object tracking is a key issue for robotics. In this paper, we propose a transformer module called Point-Track-Transformer (PTT) for point cloud-based 3D single object tracking. PTT module contains three blocks for feature embedding, positi
We introduce PC2WF, the first end-to-end trainable deep network architecture to convert a 3D point cloud into a wireframe model. The network takes as input an unordered set of 3D points sampled from the surface of some object, and outputs a wireframe
Currently, existing state-of-the-art 3D object detectors are in two-stage paradigm. These methods typically comprise two steps: 1) Utilize region proposal network to propose a fraction of high-quality proposals in a bottom-up fashion. 2) Resize and p
A crucial task in scene understanding is 3D object detection, which aims to detect and localize the 3D bounding boxes of objects belonging to specific classes. Existing 3D object detectors heavily rely on annotated 3D bounding boxes during training,