ﻻ يوجد ملخص باللغة العربية
Over the recent years, the theory of rewriting has been used and extended in order to provide systematic techniques to show coherence results for strict higher categories. Here, we investigate a further generalization to Gray categories, which are known to be equivalent to tricategories. This requires us to develop the theory of rewriting in the setting of precategories, which include Gray categories as particular cases, and are adapted to mechanized computations. We show that a finite rewriting system in precategories admits a finite number of critical pairs, which can be efficiently computed. We also extend Squiers theorem to our context, showing that a convergent rewriting system is coherent, which means that any two parallel 3-cells are necessarily equal. This allows us to prove coherence results for several well-known structures in the context of Gray categories: monoids, adjunctions, Frobenius monoids.
In this paper, we study rewriting modulo a set of algebraic axioms in categories enriched in linear categories, called linear~$(2,2)$-categories. We introduce the structure of linear~$(3,2)$-polygraph modulo as a presentation of a linear~$(2,2)$-cate
We introduce homotopical methods based on rewriting on higher-dimensional categories to prove coherence results in categories with an algebraic structure. We express the coherence problem for (symmetric) monoidal categories as an asphericity problem
This paper presents the proof of the coherence theorem for Ann-categories whose set of axioms and original basic properties were given in [9]. Let $$A=(A,{Ah},c,(0,g,d),a,(1,l,r),{Lh},{Rh})$$ be an Ann-category. The coherence theorem states that in t
Indexed symmetric monoidal categories are an important refinement of bicategories -- this structure underlies several familiar bicategories, including the homotopy bicategory of parametrized spectra, and its equivariant and fiberwise generalizations.
Restriction categories were introduced to provide an axiomatic setting for the study of partially defined mappings; they are categories equipped with an operation called restriction which assigns to every morphism an endomorphism of its domain, to be