ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-affected reflexive and stretching separation of off-center droplet collision

410   0   0.0 ( 0 )
 نشر من قبل Chengming He
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent studies have demonstrated the significant roles of droplet self-spin motion in affecting the head-on collision of binary droplets. In this paper, we present a computational study by using the Volume-of-Fluid (VOF) method to investigate the spin-affected droplet separation of off-center collisions, which are more probable in reality and phenomenologically richer than head-on collisions. Different separation modes are identified through a parametric study with varying spinning speed and impact parameter. A prominent finding is that increasing the droplet spinning speed tends to suppress the reflexive separation and to promote the stretching separation. Physically, the reflexive separation is suppressed because the increased rotational energy reduces the excessive reflexive kinetic energy within the droplet, which is the cause for the droplet reflexive separation. The stretching separation is promoted because the increased droplet angular momentum enhances the local stretching flow within the droplet, which tends to separate the droplet. The roles of orbital angular momentum and spin angular momentum in affecting the droplet separation are further substantiated by studying the collision between two spinning droplets with either the same or opposite chirality. In addition, a theoretical model based on conservation laws is proposed to qualitatively describe the boundaries of coalescence-separation transition influenced by droplet self-spin motion.



قيم البحث

اقرأ أيضاً

The off-center collision of binary bouncing droplets of equal size was studied numerically by a volume-of-fluid (VOF) method with two marker functions, which has been validated by comparing with available experimental results. A non-monotonic kinetic energy recovery with varying impact parameters was found based on the energy budget analysis. This can be explained by the prolonged entanglement time and the enhanced internal-flow-induced viscous dissipation for bouncing droplets at intermediate impact parameters, compared with those at smaller or larger impact parameters. The universality of this non-monotonicity was numerically verified, and thereby an approximate fitting formula was proposed to correlate the kinetic energy dissipation factor with the impact parameter for various Weber numbers and Ohnesorge numbers. From the vortex dynamics perspective, a helicity analysis of droplet internal flow identifies a strong three-dimensional interaction between the ring-shaped vortices and the line-shaped shear layers for off-center collisions. Furthermore, we demonstrated theoretically and verified numerically that the equivalence between the total enstrophy and the total viscous dissipation, which holds for a single-phase flow system confined by stationary boundaries, is not generally satisfied for the two-phase flow system containing gas-liquid interfaces. This is attributed to the work done by the unbalanced viscous stresses, which results from the interfacial flow and the vorticity associated with the movement of the oscillating interface.
In this article, we report experimental and semi analytical findings to elucidate the electrohydrodynamics EHD of a dielectric liquid droplet impact on superhydrophobic SH and hydrophilic surfaces. A wide range of Weber numbers We and electro-capilla ry numbers Cae is covered to explore the various regimes of droplet impact EHD. We show that for a fixed We 60, droplet rebound on SH surface is suppressed with increase of electric field intensity. At high Cae, instead of the usual uniform radial contraction, the droplets retract faster in orthogonal direction to the electric field and spread along the direction of the electric field. This prevents the accumulation of sufficient kinetic energy to achieve the droplet rebound phenomena. For certain values of We and Ohnesorge number Oh, droplets exhibit somersault like motion during rebound. Subsequently we propose a semi analytical model to explain the field induced rebound phenomenon on SH surfaces. Above a critical Cae 4.0, EHD instability causes fingering pattern via evolution of spire at the rim. Further, the spreading EHD on both hydrophilic and SH surfaces are discussed. On both wettability surfaces and for a fixed We, the spreading factor shows an increasing trend with increase in Cae. We have formulated an analytical model based on energy conservation to predict the maximum spreading diameter. The model predictions hold reasonably good agreement with the experimental observations. Finally, a phase map was developed to explain the post impact droplet dynamics on SH surfaces for a wide range of We and Cae.
Inspired by the hemispherical asymmetry observed in the Earths inner core, we perform direct numerical simulations to study the effect of the gravity center offset in spherical Rayleigh-Benard convection. We find that even a minimal shift of the grav ity center has a pronounced influence on the flow structures. When the gravity center is shifted towards the South, the co-latitudinal buoyancy component creates an energetic jet on the Northern side of the inner sphere that is directed towards the outer sphere. As a result, a large-scale meridional circulation is formed. However, surprisingly, the global heat flux is not affected by the changes in the large-scale flow organization induced by the gravity center offset. Our results suggest that the hemispherical core asymmetry is key to model the flow phenomena in the Earths outer core and mantle.
An essential ingredient of turbulent flows is the vortex stretching mechanism, which emanates from the non-linear interaction of vorticity and strain-rate tensor and leads to formation of extreme events. We analyze the statistical correlations betwee n vorticity and strain rate by using a massive database generated from very well resolved direct numerical simulations of forced isotropic turbulence in periodic domains. The grid resolution is up to $12288^3$, and the Taylor-scale Reynolds number is in the range $140-1300$. In order to understand the formation and structure of extreme vorticity fluctuations, we obtain statistics conditioned on enstrophy (vorticity-squared). The magnitude of strain, as well as its eigenvalues, is approximately constant when conditioned on weak enstrophy; whereas they grow approximately as power laws for strong enstrophy, which become steeper with increasing $R_lambda$. We find that the well-known preferential alignment between vorticity and the intermediate eigenvector of strain tensor is even stronger for large enstrophy, whereas vorticity shows a tendency to be weakly orthogonal to the most extensive eigenvector (for large enstrophy). Yet the dominant contribution to the production of large enstrophy events arises from the most extensive eigendirection, the more so as $R_lambda$ increases. Nevertheless, the stretching in intense vorticity regions is significantly depleted, consistent with the kinematic properties of weakly-curved tubes in which they are organized. Further analysis reveals that intense enstrophy is primarily depleted via viscous diffusion, though viscous dissipation is also significant. Implications for modeling are nominally addressed as appropriate.
Droplet migration in a Hele--Shaw cell is a fundamental multiphase flow problem which is crucial for many microfluidics applications. We focus on the regime at low capillary number and three-dimensional direct numerical simulations are performed to i nvestigate the problem. In order to reduce the computational cost, an adaptive mesh is employed and high mesh resolution is only used near the interface. Parametric studies are performed on the droplet horizontal radius and the capillary number. For droplets with an horizontal radius larger than half the channel height the droplet overfills the channel and exhibits a pancake shape. A lubrication film is formed between the droplet and the wall and particular attention is paid to the effect of the lubrication film on the droplet velocity. The computed velocity of the pancake droplet is shown to be lower than the average inflow velocity, which is in agreement with experimental measurements. The numerical results show that both the strong shear induced by the lubrication film and the three-dimensional flow structure contribute to the low mobility of the droplet. In this low-migration-velocity scenario the interfacial flow in the droplet reference frame moves toward the rear on the top and reverses direction moving to the front from the two side edges. The velocity of the pancake droplet and the thickness of the lubrication film are observed to decrease with capillary number. The droplet velocity and its dependence on capillary number cannot be captured by the classic Hele--Shaw equations, since the depth-averaged approximation neglects the effect of the lubrication film.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا