ترغب بنشر مسار تعليمي؟ اضغط هنا

Uncovering Main Causalities for Long-tailed Information Extraction

121   0   0.0 ( 0 )
 نشر من قبل Rui Qiao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Information Extraction (IE) aims to extract structural information from unstructured texts. In practice, long-tailed distributions caused by the selection bias of a dataset, may lead to incorrect correlations, also known as spurious correlations, between entities and labels in the conventional likelihood models. This motivates us to propose counterfactual IE (CFIE), a novel framework that aims to uncover the main causalities behind data in the view of causal inference. Specifically, 1) we first introduce a unified structural causal model (SCM) for various IE tasks, describing the relationships among variables; 2) with our SCM, we then generate counterfactuals based on an explicit language structure to better calculate the direct causal effect during the inference stage; 3) we further propose a novel debiasing approach to yield more robust predictions. Experiments on three IE tasks across five public datasets show the effectiveness of our CFIE model in mitigating the spurious correlation issues.

قيم البحث

اقرأ أيضاً

Label noise and long-tailed distributions are two major challenges in distantly supervised relation extraction. Recent studies have shown great progress on denoising, but pay little attention to the problem of long-tailed relations. In this paper, we introduce constraint graphs to model the dependencies between relation labels. On top of that, we further propose a novel constraint graph-based relation extraction framework(CGRE) to handle the two challenges simultaneously. CGRE employs graph convolution networks (GCNs) to propagate information from data-rich relation nodes to data-poor relation nodes, and thus boosts the representation learning of long-tailed relations. To further improve the noise immunity, a constraint-aware attention module is designed in CGRE to integrate the constraint information. Experimental results on a widely-used benchmark dataset indicate that our approach achieves significant improvements over the previous methods for both denoising and long-tailed relation extraction. Our dataset and codes are available at https://github.com/tmliang/CGRE.
State-of-the-art Neural Machine Translation (NMT) models struggle with generating low-frequency tokens, tackling which remains a major challenge. The analysis of long-tailed phenomena in the context of structured prediction tasks is further hindered by the added complexities of search during inference. In this work, we quantitatively characterize such long-tailed phenomena at two levels of abstraction, namely, token classification and sequence generation. We propose a new loss function, the Anti-Focal loss, to better adapt model training to the structural dependencies of conditional text generation by incorporating the inductive biases of beam search in the training process. We show the efficacy of the proposed technique on a number of Machine Translation (MT) datasets, demonstrating that it leads to significant gains over cross-entropy across different language pairs, especially on the generation of low-frequency words. We have released the code to reproduce our results.
Most modern Information Extraction (IE) systems are implemented as sequential taggers and only model local dependencies. Non-local and non-sequential context is, however, a valuable source of information to improve predictions. In this paper, we intr oduce GraphIE, a framework that operates over a graph representing a broad set of dependencies between textual units (i.e. words or sentences). The algorithm propagates information between connected nodes through graph convolutions, generating a richer representation that can be exploited to improve word-level predictions. Evaluation on three different tasks --- namely textual, social media and visual information extraction --- shows that GraphIE consistently outperforms the state-of-the-art sequence tagging model by a significant margin.
The multi-format information extraction task in the 2021 Language and Intelligence Challenge is designed to comprehensively evaluate information extraction from different dimensions. It consists of an multiple slots relation extraction subtask and tw o event extraction subtasks that extract events from both sentence-level and document-level. Here we describe our system for this multi-format information extraction competition task. Specifically, for the relation extraction subtask, we convert it to a traditional triple extraction task and design a voting based method that makes full use of existing models. For the sentence-level event extraction subtask, we convert it to a NER task and use a pointer labeling based method for extraction. Furthermore, considering the annotated trigger information may be helpful for event extraction, we design an auxiliary trigger recognition model and use the multi-task learning mechanism to integrate the trigger features into the event extraction model. For the document-level event extraction subtask, we design an Encoder-Decoder based method and propose a Transformer-alike decoder. Finally,our system ranks No.4 on the test set leader-board of this multi-format information extraction task, and its F1 scores for the subtasks of relation extraction, event extractions of sentence-level and document-level are 79.887%, 85.179%, and 70.828% respectively. The codes of our model are available at {https://github.com/neukg/MultiIE}.
Multi-label text classification is a challenging task because it requires capturing label dependencies. It becomes even more challenging when class distribution is long-tailed. Resampling and re-weighting are common approaches used for addressing the class imbalance problem, however, they are not effective when there is label dependency besides class imbalance because they result in oversampling of common labels. Here, we introduce the application of balancing loss functions for multi-label text classification. We perform experiments on a general domain dataset with 90 labels (Reuters-21578) and a domain-specific dataset from PubMed with 18211 labels. We find that a distribution-balanced loss function, which inherently addresses both the class imbalance and label linkage problems, outperforms commonly used loss functions. Distribution balancing methods have been successfully used in the image recognition field. Here, we show their effectiveness in natural language processing. Source code is available at https://github.com/blessu/BalancedLossNLP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا