ﻻ يوجد ملخص باللغة العربية
In this work we refine the analysis of the distributed Laplacian solver recently established by Forster, Goranci, Liu, Peng, Sun, and Ye (FOCS 21), via the Ghaffari-Haeupler framework (SODA 16) of low-congestion shortcuts. Specifically, if $epsilon > 0$ represents the error of the solver, we derive two main results. First, for any $n$-node graph $G$ with hop-diameter $D$ and treewidth bounded by $k$, we show the existence of a Laplacian solver with round complexity $O(n^{o(1)}kD log(1/epsilon))$ in the CONGEST model. For graphs with bounded treewidth this circumvents the notorious $Omega(sqrt{n})$ lower bound for global problems in general graphs. Moreover, following a recent line of work in distributed algorithms, we consider a hybrid communication model which enhances CONGEST with very limited global power in the form of the recently introduced node-capacitated clique. In this model, we show the existence of a Laplacian solver with round complexity $O(n^{o(1)} log(1/epsilon))$. The unifying thread of these results is an application of accelerated distributed algorithms for a congested variant of the standard part-wise aggregation problem that we introduce. This primitive constitutes the primary building block for simulating local operations on low-congestion minors, and we believe that this framework could be more generally applicable.
Existing distributed machine learning (DML) systems focus on improving the computational efficiency of distributed learning, whereas communication aspects have received less attention. Many DML systems treat the network as a blackbox. Thus, DML algor
Ground-state cooling of mechanical resonators is an important task in quantum optomechanics, because it is a necessary prerequisite for creation, manipulation, and application of macroscopic mechanical coherence. Here, we propose a transient-state sc
Maximum weight matching is one of the most fundamental combinatorial optimization problems with a wide range of applications in data mining and bioinformatics. Developing distributed weighted matching algorithms is challenging due to the sequential n
Finding or monitoring subgraph instances that are isomorphic to a given pattern graph in a data graph is a fundamental query operation in many graph analytic applications, such as network motif mining and fraud detection. The state-of-the-art distrib
We use queueing networks to present a new approach to solving Laplacian systems. This marks a significant departure from the existing techniques, mostly based on graph-theoretic constructions and sampling. Our distributed solver works for a large and