ﻻ يوجد ملخص باللغة العربية
We present the design and lab performance of a prototype lenslet-slicer hybrid integral field spectrograph (IFS), validating the concept for use in future instruments like SCALES/PSI-Red. By imaging extrasolar planets with IFS, it is possible to measure their chemical compositions, temperatures and masses. Many exoplanet-focused instruments use a lenslet IFS to make datacubes with spatial and spectral information used to extract spectral information of imaged exoplanets. Lenslet IFS architecture results in very short spectra and thus low spectral resolution. Slicer IFSs can obtain higher spectral resolution but at the cost of increased optical aberrations that propagate through the down-stream spectrograph and degrade the spatial information we can extract. We have designed a lenslet/slicer hybrid that combines the minimal aberrations of the lenslet IFS with the high spectral resolution of the slicer IFS. The slicer output f/# matches the lenslet f/# requiring only additional gratings.
Integral Field Spectroscopy (IFS) is a technique that gives simultaneously the spectrum of each spatial sampling element in a given object field. It is a powerful tool which rearranges the data cube (x, y, lambda) represented by two spatial dimension
In this article we present the integral field spectroscopy (IFS) wiki site, http://ifs.wikidot.com; what the wiki is, our motivation for creating it, and a short introduction to IFS. The IFS wiki is designed to be a central repository of information,
CYCLOPS2 is an upgrade for the UCLES high resolution spectrograph on the Anglo-Australian Telescope, scheduled for commissioning in semester 2012A. By replacing the 5 mirror Coude train with a Cassegrain mounted fibre-based image slicer CYCLOPS2 simu
Large imaging arrays of detectors at millimeter and submillimeter wavelengths have applications that include measurements of the faint polarization signal in the Cosmic Microwave Background (CMB), and submillimeter astrophysics. We are developing pla
We present an automated statistical method that uses medium-resolution spectroscopic observations of a set of stars to select those that show evidence of possessing significant amounts of neutron-capture elements. Our tool was tested against a sample