ﻻ يوجد ملخص باللغة العربية
The problem of the gravitational radiation damping of neutron star fundamental ($f$) mode oscillations has received considerable attention. Many studies have looked at the stability of such oscillations in rapidly rotating stars, calculating the growth/decay rate of the mode amplitude. In this paper, we look at the relatively neglected problem of the radiation reaction on the spin of the star. We specialise greatly to the so-called Kelvin modes: the modes of oscillation of (initially) non-rotating incompressible stars. We find the unexpected result that the excitation of a mode of angular momentum $delta J$ on an initially non-rotating star ends up radiating an angular momentum $2 delta J$ to infinity, leaving the star itself with a bulk angular momentum of $-delta J$. This result is interesting in itself, and also will have implications for the angular momentum budgets of spinning down neutron stars, should such modes be excited.
We investigate the possibility of observing very low frequency (VLF) electromagnetic radiation produced from the vacuum by gravitational waves. We review the calculations leading to the possibility of vacuum conversion of gravitational waves into ele
After discussing the various issues regarding and requirements on pure quantum gravitational observables in homogeneous-isotropic conditions, we construct a composite operator observable satisfying most of them. We also expand it to first order in th
The back reaction of gravitational perturbations in a homogeneous background is determined by an effective energy-momentum tensor quadratic in the perturbations. We show that this nonlinear feedback effect is important in the case of long wavelength
Atom-interferometer gravitational-wave (GW) observatory, as a new design of ground-based GW detector for the near future, is sensitive at a relatively low frequency for GW observations. Taking the proposed atom interferometer Zhaoshan Long-baseline A
We study non-radial oscillations of neutron stars with superfluid baryons, in a general relativistic framework, including finite temperature effects. Using a perturbative approach, we derive the equations describing stellar oscillations, which we sol