ﻻ يوجد ملخص باللغة العربية
We consider the problem of correctly identifying the mode of a discrete distribution $mathcal{P}$ with sufficiently high probability by observing a sequence of i.i.d. samples drawn according to $mathcal{P}$. This problem reduces to the estimation of a single parameter when $mathcal{P}$ has a support set of size $K = 2$. Noting the efficiency of prior-posterior-ratio (PPR) martingale confidence sequences for handling this special case, we propose a generalisation to mode estimation, in which $mathcal{P}$ may take $K geq 2$ values. We observe that the one-versus-one principle yields a more efficient generalisation than the one-versus-rest alternative. Our resulting stopping rule, denoted PPR-ME, is optimal in its sample complexity up to a logarithmic factor. Moreover, PPR-ME empirically outperforms several other competing approaches for mode estimation. We demonstrate the gains offered by PPR-ME in two practical applications: (1) sample-based forecasting of the winner in indirect election systems, and (2) efficient verification of smart contracts in permissionless blockchains.
The prior distribution on parameters of a likelihood is the usual starting point for Bayesian uncertainty quantification. In this paper, we present a different perspective. Given a finite data sample $Y_{1:n}$ of size $n$ from an infinite population,
We develop confidence bounds that hold uniformly over time for off-policy evaluation in the contextual bandit setting. These confidence sequences are based on recent ideas from martingale analysis and are non-asymptotic, non-parametric, and valid at
Consider a two-by-two factorial experiment with more than 1 replicate. Suppose that we have uncertain prior information that the two-factor interaction is zero. We describe new simultaneous frequentist confidence intervals for the 4 population cell m
The statistical problem for network tomography is to infer the distribution of $mathbf{X}$, with mutually independent components, from a measurement model $mathbf{Y}=Amathbf{X}$, where $A$ is a given binary matrix representing the routing topology of
We consider a resampling scheme for parameters estimates in nonlinear regression models. We provide an estimation procedure which recycles, via random weighting, the relevant parameters estimates to construct consistent estimates of the sampling dist