ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluating and Enhancing Candidate Clocking Systems for CHIME/FRB VLBI Outriggers

191   0   0.0 ( 0 )
 نشر من قبل Savannah Cary
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As the Canadian Hydrogen Intensity Mapping Experiment (CHIME) has become the leading instrument for detecting Fast Radio Bursts (FRBs), CHIME/FRB Outriggers will use very-long-baseline interferometry (VLBI) to localize FRBs with milliarcsecond precision. The CHIME site uses a passive hydrogen maser frequency standard in order to minimize localization errors due to clock delay. However, not all outrigger stations will have access to a maser. This report presents techniques used to evaluate clocks for use at outrigger sites without a maser. More importantly, the resulting algorithm provides calibration methods for clocks that do not initially meet the stability requirements for VLBI, thus allowing CHIME/FRB Outriggers to remain true to the goal of having milliarcsecond precision.

قيم البحث

اقرأ أيضاً

We demonstrate the blind interferometric detection and localization of two fast radio bursts (FRBs) with 2- and 25-arcsecond precision on the 400-m baseline between the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and the CHIME Pathfinder. In the same spirit as very long baseline interferometry (VLBI), the telescopes were synchronized to separate clocks, and the channelized voltage (herein referred to as baseband) data were saved to disk with correlation performed offline. The simultaneous wide field of view and high sensitivity required for blind FRB searches implies a high data rate -- 6.5 terabits per second (Tb/s) for CHIME and 0.8 Tb/s for the Pathfinder. Since such high data rates cannot be continuously saved, we buffer data from both telescopes locally in memory for $approx 40$ s, and write to disk upon receipt of a low-latency trigger from the CHIME Fast Radio Burst Instrument (CHIME/FRB). The $approx200$ deg$^2$ field of view of the two telescopes allows us to use in-field calibrators to synchronize the two telescopes without needing either separate calibrator observations or an atomic timing standard. In addition to our FRB observations, we analyze bright single pulses from the pulsars B0329+54 and B0355+54 to characterize systematic localization errors. Our results demonstrate the successful implementation of key software, triggering, and calibration challenges for CHIME/FRB Outriggers: cylindrical VLBI outrigger telescopes which, along with the CHIME telescope, will localize thousands of single FRB events to 50 milliarcsecond precision.
Polarimetric observations of Fast Radio Bursts (FRBs) are a powerful resource for better understanding these mysterious sources by directly probing the emission mechanism of the source and the magneto-ionic properties of its environment. We present a pipeline for analysing the polarized signal of FRBs captured by the triggered baseband recording system operating on the FRB survey of The Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB). Using a combination of simulated and real FRB events, we summarize the main features of the pipeline and highlight the dominant systematics affecting the polarized signal. We compare parametric (QU-fitting) and non-parametric (rotation measure synthesis) methods for determining the Faraday rotation measure (RM) and find the latter method susceptible to systematic errors from known instrumental effects of CHIME/FRB observations. These errors include a leakage artefact that appears as polarized signal near $rm{RMsim 0 ; rad , m^{-2}}$ and an RM sign ambiguity introduced by path length differences in the systems electronics. We apply the pipeline to a bright burst previously reported by citet[FRB 20191219F;][]{Leung2021}, detecting an $mathrm{RM}$ of $rm{+6.074 pm 0.006 pm 0.050 ; rad , m^{-2}}$ with a significant linear polarized fraction ($gtrsim0.87$) and strong evidence for a non-negligible circularly polarized component. Finally, we introduce an RM search method that employs a phase-coherent de-rotation algorithm to correct for intra-channel depolarization in data that retain electric field phase information, and successfully apply it to an unpublished FRB, FRB 20200917A, measuring an $mathrm{RM}$ of $rm{-1294.47 pm 0.10 pm 0.05 ; rad , m^{-2}}$ (the second largest unambiguous RM detection from any FRB source observed to date).
We have developed FFT beamforming techniques for the CHIME radio telescope, to search for and localize the astrophysical signals from Fast Radio Bursts (FRBs) over a large instantaneous field-of-view (FOV) while maintaining the full angular resolutio n of CHIME. We implement a hybrid beamforming pipeline in a GPU correlator, synthesizing 256 FFT-formed beams in the North-South direction by four formed beams along East-West via exact phasing, tiling a sky area of ~250 square degrees. A zero-padding approximation is employed to improve chromatic beam alignment across the wide bandwidth of 400 to 800 MHz. We up-channelize the data in order to achieve fine spectral resolution of $Delta u$=24 kHz and time cadence of 0.983 ms, desirable for detecting transient and dispersed signals such as those from FRBs.
The CHIME/FRB Project has recently released its first catalog of fast radio bursts (FRBs), containing 492 unique sources. We present results from angular cross-correlations of CHIME/FRB sources with galaxy catalogs. We find a statistically significan t ($p$-value $sim 10^{-4}$, accounting for look-elsewhere factors) cross-correlation between CHIME FRBs and galaxies in the redshift range $0.3 lesssim z lesssim 0.5$, in three photometric galaxy surveys: WISE$times$SCOS, DESI-BGS, and DESI-LRG. The level of cross-correlation is consistent with an order-one fraction of the CHIME FRBs being in the same dark matter halos as survey galaxies in this redshift range. We find statistical evidence for a population of FRBs with large host dispersion measure ($sim 400$ pc cm$^{-3}$), and show that this can plausibly arise from gas in large halos ($M sim 10^{14} M_odot$), for FRBs near the halo center ($r lesssim 100$ kpc). These results will improve in future CHIME/FRB catalogs, with more FRBs and better angular resolution.
The Canadian Hydrogen Intensity Mapping Experiment (CHIME) has become a leading facility for detecting fast radio bursts (FRBs) through the CHIME/FRB backend. CHIME/FRB searches for fast transients in polarization-summed intensity data streams that h ave 24-kHz spectral and 1-ms temporal resolution. The intensity beams are pointed to pre-determined locations in the sky. A triggered baseband system records the coherent electric field measured by each antenna in the CHIME array at the time of FRB detections. Here we describe the analysis techniques and automated pipeline developed to process these full-array baseband data recordings. Whereas the real-time FRB detection pipeline has a localization limit of several arcminutes, offline analysis of baseband data yields source localizations with sub-arcminute precision, as characterized by using a sample of pulsars and one repeating FRB with known positions. The baseband pipeline also enables resolving temporal substructure on a micro-second scale and the study of polarization including detections of Faraday rotation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا