ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Impact of Inclination-Dependent Attenuation on Derived Star-Formation Histories: Results from Disk Galaxies in the GOODS Fields

247   0   0.0 ( 0 )
 نشر من قبل Keith Doore
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop and implement an inclination-dependent attenuation prescription for spectral energy distribution (SED) fitting and study its impact on derived star-formation histories. We apply our prescription within the SED fitting code Lightning to a clean sample of 82, z = 0.21-1.35 disk-dominated galaxies in the Great Observatories Origins Deep Survey (GOODS) North and South fields. To compare our inclination-dependent attenuation prescription with more traditional fitting prescriptions, we also fit the SEDs with the inclination-independent Calzetti et al. (2000) attenuation curve. From this comparison, we find that fits to a subset of 58, z < 0.7 galaxies in our sample, utilizing the Calzetti et al. (2000) prescription, recover similar trends with inclination as the inclination-dependent fits for the FUV-band attenuation and recent star-formation rates. However, we find a difference between prescriptions in the optical attenuation (AV) that is strongly correlated with inclination (p-value < 10^-10). For more face-on galaxies, with i < 50 deg, (edge-on, i = 90 deg), the average derived AV is 0.30 +/- 0.10 magnitudes lower (0.55 +/- 0.15 magnitudes higher) for the inclination-dependent model compared to traditional methods. Further, the ratio of stellar masses between prescriptions also has a significant (p-value < 10^-2) trend with inclination. For i = 0-65 deg, stellar masses are systematically consistent between fits, with log(Mstar_inc/Mstar_Calzetti) = -0.05 +/- 0.03 dex, and scatter of 0.11 dex. However, for i = 80-90 deg, derived stellar masses are lower for the Calzetti et al. (2000) fits by an average factor of 0.17 +/- 0.02 dex, and scatter of 0.13 dex. Therefore, these results suggest that SED fitting assuming the Calzetti et al. (2000) attenuation law potentially underestimates stellar masses in highly inclined disk-dominated galaxies.



قيم البحث

اقرأ أيضاً

137 - Hong-Xin Zhang 2017
Local Group (LG) galaxies have relatively accurate SFHs and metallicity evolution derived from resolved CMD modeling, and thus offer a unique opportunity to explore the efficacy of estimating stellar mass M$_{star}$ of real galaxies based on integrat ed stellar luminosities. Building on the SFHs and metallicity evolution of 40 LG dwarf galaxies, we carried out a comprehensive study of the influence of SFHs, metallicity evolution, and dust extinction on the UV-to-NIR color-$M/L$ (color-log$Upsilon_{star}$($lambda$)) relations and M$_{star}$ estimation of local universe galaxies. We find that: The LG galaxies follow color-log$Upsilon_{star}$($lambda$) relations that fall in between the ones calibrated by previous studies; Optical color-log$Upsilon_{star}$($lambda$) relations at higher metallicities ([M/H]) are generally broader and steeper; The SFH concentration does not significantly affect the color-log$Upsilon_{star}$($lambda$) relations; Light-weighted ages and [M/H] together constrain log$Upsilon_{star}$($lambda$) with uncertainties ranging from $lesssim$ 0.1 dex for the NIR up to 0.2 dex for the optical passbands; Metallicity evolution induces significant uncertainties to the optical but not NIR $Upsilon_{star}$($lambda$) at given light-weighted ages and [M/H]; The $V$ band is the ideal luminance passband for estimating $Upsilon_{star}$($lambda$) from single colors, because the combinations of $Upsilon_{star}$($V$) and optical colors such as $B-V$ and $g-r$ exhibit the weakest systematic dependence on SFHs, [M/H] and dust extinction; Without any prior assumption on SFHs, M$_{star}$ is constrained with biases $lesssim$ 0.3 dex by the optical-to-NIR SED fitting. Optical passbands alone constrain M$_{star}$ with biases $lesssim$ 0.4 dex (or $lesssim$ 0.6 dex) when dust extinction is fixed (or variable) in SED fitting. [abridged]
The resolved stellar populations of local galaxies, from which it is possible to derive complete star formation and chemical enrichment histories, provide an important way to study galaxy formation and evolution that is complementary to lookback time studies. We propose to use photometry of resolved stars to measure the star formation histories in a statistical sample of galaxy disks and E/S0 galaxies near their effective radii. These measurements would yield strong evidence to support critical questions regarding the formation of galactic disks and spheroids. The main technological limitation is spatial resolution for photometry in heavily crowded fields, for which we need improvement by a factor of ~10 over what is possible today with filled aperture telescopes.
113 - R.X. Chang , J.L. Hou , S.Y. Shen 2010
We introduce a simple model to explore the star formation histories of disk galaxies. We assume that the disk origins and grows by continuous gas infall. The gas infall rate is parametrized by the Gaussian formula with one free parameter: infall-peak time $t_p$. The Kennicutt star formation law is adopted to describe how much cold gas turns into stars. The gas outflow process is also considered in our model. We find that, at given galactic stellar mass $M_*$, model adopting late infall-peak time $t_p$ results in blue colors, low metallicity, high specific star formation rate and high gas fraction, while gas outflow rate mainly influences the gas-phase metallicity and star formation efficiency mainly influences the gas fraction. Motivated by the local observed scaling relations, we construct a mass-dependent model by assuming low mass galaxy has later infall-peak time $t_p$ and larger gas outflow rate than massive systems. It is shown that this model can be in agreement with not only the local observations, but also the observed correlations between specific star formation rate and galactic stellar mass $SFR/M_* sim M_*$ at intermediate redshift $z<1$. Comparison between the Gaussian-infall model and exponential-infall model is also presented. It shows that the exponential-infall model predicts higher star formation rate at early stage and lower star formation rate later than that of Gaussian-infall. Our results suggest that the Gaussian infall rate may be more reasonable to describe the gas cooling process than the exponential infall rate, especially for low-mass systems.
Extinction in galaxies affects their observed properties. In scenarios describing the distribution of dust and stars in individual disk galaxies, the amplitude of the extinction can be modulated by the inclination of the galaxies. In this work we inv estigate the inclination dependency in composite spectra of star-forming disk galaxies from the Sloan Digital Sky Survey Data Release 5. In a volume-limited sample within a redshift range 0.065-0.075 and a r-band Petrosian absolute magnitude range -19.5 to -22 which exhibits a flat distribution of inclination, the inclined relative to face-on extinction in the stellar continuum is found empirically to increase with inclination in the g, r, and i bands. Within the central 0.5 intrinsic half-light radius of the galaxies, the g-band relative extinction in the stellar continuum for the highly-inclined objects (axis ratio b/a = 0.1) is 1.2 mag, agreeing with previous studies. The extinction curve of the disk galaxies is given in the restframe wavelengths 3700-8000 angstrom, identified with major optical emission and absorption lines in diagnostics. The Balmer decrement remains constant with inclination, suggesting a different kind of dust configuration and/or reddening mechanism in the HII region from that in the stellar continuum. One factor is shown to be the presence of spatially non-uniform interstellar extinction, presumably caused by clumped dust in the vicinity of the HII region.
431 - Pavel Kroupa 2020
The majority of galaxies with current star-formation rates (SFRs), SFRo >= 10^-3 Msun/yr, in the Local Cosmological Volume where observations should be reliable, have the property that their observed SFRo is larger than their average star formation r ate. This is in tension with the evolution of galaxies described by delayed-tau models, according to which the opposite would be expected. The tension is apparent in that local galaxies imply the star formation timescale tau approx 6.7 Gyr, much longer than the 3.5-4.5 Gyr obtained using an empirically determined main sequence at several redshifts. Using models where the SFR is a power law in time of the form propto (t - t1)^eta for t1 = 1.8 Gyr (with no stars forming prior to t1) implies that eta = 0.18 +- 0.03. This suggested near-constancy of a galaxys SFR over time raises non-trivial problems for the evolution and formation time of galaxies, but is broadly consistent with the observed decreasing main sequence with increasing age of the Universe.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا