ﻻ يوجد ملخص باللغة العربية
Vacancy ordered halide perovskites have been extensively investigated as promising lead-free alternatives to halide perovskites for various opto-electronic applications. Among these Cs$_{2}$TiBr$_{6}$ has been reported as a stable absorber with interesting electronic and optical properties, such as a band-gap in the visible, and long carrier diffusion lengths. Yet, a thorough theoretical analysis of the exhibited properties is still missing in order to further assess its application potential from a materials design point of view. In this letter, we perform a detailed analysis for the established Ti-based compounds and investigate the less-known materials based on Zr. We discuss in details their electronic properties and band symmetries, highlight the similarity between the materials in terms of properties, and reveal limits for tuning electronic and optical properties within this family of vacancy ordered double perovskites that share the same electron configuration. We also show the challenges to compute accurate and meaningful quasi-particle corrections at GW level. Furthermore, we address their chemical stability against different decomposition reaction pathways, identifying stable regions for the formation of all materials, while probing their mechanical stability employing phonon calculations. We predict that Cs$_{2}$ZrI$_{6}$, a material practically unexplored to-date, shall exhibit a quasi-direct electronic band-gap well within the visible range, the smallest charge carrier effective masses within the Cs$_{2}$BX$_{6}$ (B=Ti,Zr; X=Br, I) compounds, and a good chemical stability.
Despite the exceeding 23% photovoltaic efficiency achieved in organic-inorganic hybrid perovskite solar cells obtaining, the stable materials with desirable band gap are rare and are highly desired. With the aid of first-principles calculations, we p
As a possible alternative to organic-inorganic hybrid perovskite halide, inorganic Cs2SnI6 has drawn more and more research attention recently. In order to find more Cs2SnI6 derivatives as the potential solar cell absorber materials, I- ions in Cs2Sn
Ba2CoWO6 (BCoW) has been synthesized in polycrystalline form by solid state reaction at 1200C. Structural characterization of the compound was done through X-ray diffraction (XRD) followed by Rietveld analysis of the XRD pattern. The crystal structur
In oxide epitaxy, the growth temperature and background oxygen partial pressure are considered as the most critical factors that control the phase stability of an oxide thin film. Here, we report an unusual case wherein diffusion of oxygen vacancies
Alanates and boranates are studied intensively because of their potential use as hydrogen storage materials. In this paper we present a first-principles study of the electronic structure and the energetics of beryllium boranate, Be(BH4)2. From total