ترغب بنشر مسار تعليمي؟ اضغط هنا

Prospects for Mapping Temporal Height Variations of the Seasonal CO2 Snow/Ice Caps at the Martian Poles by Co-registration of MOLA Profiles

103   0   0.0 ( 0 )
 نشر من قبل Haifeng Xiao
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the feasibility and demonstrate the merits of using Mars Orbiter Laser Altimeter (MOLA) profiles to retrieve seasonal height variations of CO2 snow/ice cap in Mars polar areas by applying a co-registration strategy. We present a prototype analysis on the research region of [85.75{deg}S, 86.25{deg}S, 300{deg}E, 330{deg}E] that is located on the residual south polar cap. Our method comprises the recomputation of MOLA footprint coordinates with an updated Mars Global Surveyor (MGS) ephemeris and a revised Mars rotation model. The reprocessed MOLA dataset at the South Pole of Mars (poleward of 78{deg}S) is then self-registered to form a coherent reference digital terrain model (DTM). We co-register segments of reprocessed MOLA profiles to the self-registered MOLA reference DTM to obtain the temporal height differences at either footprints or cross-overs. Subsequently, a two-step Regional Pseudo Cross-over Adjustment (RPCA) procedure is proposed and applied to post-correct the aforementioned temporal height differences for a temporal systematic bias and other residual errors. These pseudo cross-overs are formed by profile pairs that do not necessarily intersect, but are connected through the underlaying DTM. Finally, CO2 snow/ice temporal height variation is obtained by median-filtering those post-corrected temporal height differences. The precision of the derived height change time series is ~4.9 cm. The peak-to-peak height variation is estimated to be ~2 m. In addition, a pronounced pit (transient height accumulation) of ~0.5 m in magnitude centered at Ls=210{deg} in southern spring is observed. The proposed method opens the possibility to map the seasonal CO2 snow/ice height variations at the entire North and South polar regions of Mars.



قيم البحث

اقرأ أيضاً

Planet atmosphere and hydrosphere compositions are fundamentally set by accretion of volatiles, and therefore by the division of volatiles between gas and solids in planet-forming disks. For hyper-volatiles such as CO, this division is regulated by a combination of binding energies, and by the ability of other ice components to entrap. Water ice is known for its ability to trap CO and other volatile species. In this study we explore whether another common interstellar and cometary ice component, CO2, is able to trap CO as well. We measure entrapment of CO molecules in CO2 ice through temperature programmed desorption (TPD) experiments on CO2:CO ice mixtures. We find that CO2 ice traps CO with a typical efficiency of 40-60% of the initially deposited CO molecules for a range of ice thicknesses between 7 and 50ML, and ice mixture ratios between 1:1 and 9:1. The entrapment efficiency increases with ice thickness and CO dilution. We also run analogous H2O:CO experiments and find that under comparable experimental conditions CO2 ice entraps CO more efficiently than H2O ice up to the onset of CO2 desorption at ~70K. We speculate that this may be due to different ice restructuring dynamics in H2O and CO2 ices around the CO desorption temperature. Importantly, the ability of CO2 to entrap CO may change the expected division between gas and solids for CO and other hyper-volatiles exterior to the CO2 snowline during planet formation.
127 - Daniel Kitzmann 2016
Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO2 dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a mass ive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.
We visually inspected the light curves of 7557 Kepler Objects of Interest (KOIs) to search for single transit events (STEs) possibly due to long-period giant planets. We identified 28 STEs in 24 KOIs, among which 14 events are newly reported in this paper. We estimate the radius and orbital period of the objects causing STEs by fitting the STE light curves simultaneously with the transits of the other planets in the system or with the prior information on the host star density. As a result, we found that STEs in seven of those systems are consistent with Neptune- to Jupiter-sized objects of orbital periods ranging from a few to $sim$ $20,mathrm{yr}$. We also estimate that $gtrsim20%$ of the compact multi-transiting systems host cool giant planets with periods $gtrsim 3,mathrm{yr}$ on the basis of their occurrence in the KOIs with multiple candidates, assuming the small mutual inclination between inner and outer planetary orbits.
The ion escape of Mars CO$_2$ atmosphere caused by its dissociation products C and O atoms is simulated from present time to $approx$4.1 billion years ago (Ga) by numerical models of the upper atmosphere and its interaction with the solar wind. The p lanetward-scattered pick-up ions are used for sputtering estimates of exospheric particles including $^{36}$Ar and $^{38}$Ar isotopes. Total ion escape, sputtering and photochemical escape rates are compared. For solar EUV fluxes $geq$3 times that of todays Sun (earlier than $approx$2.6 Ga) ion escape becomes the dominant atmospheric non-thermal loss process until thermal escape takes over during the pre-Noachian eon (earlier than $approx$4.0-4.1 Ga). If we extrapolate the total escape of CO$_2$-related dissociation products back in time until $approx$4.1 Ga we obtain a theoretical equivalent to CO$_2$ partial pressure of more than $approx$3 bar, but this amount did not necessarily have to be present. The fractionation of $^{36}$Ar/$^{38}$Ar isotopes through sputtering and volcanic outgassing from its initial chondritic value of 5.3, as measured in the 4.1 billion years old Mars meteorite ALH 84001, until the present day can be reproduced for assumed CO$_2$ partial pressures between $approx$0.2-3.0 bar, depending on the cessation time of the Martian dynamo (assumed between 3.6-4.0 Ga) - if atmospheric sputtering of Ar started afterwards.
Using Gaussian Process regression to analyze the Martian surface methane Tunable Laser Spectrometer (TLS) data reported by Webster (2018), we find that the TLS data, taken as a whole, are not statistically consistent with seasonal variability. The su bset of data derived from an enrichment protocol of TLS, if considered in isolation, are equally consistent with either stochastic processes or periodic variability, but the latter does not favour seasonal variation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا