ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatio-Temporal Recurrent Networks for Event-Based Optical Flow Estimation

173   0   0.0 ( 0 )
 نشر من قبل Gang Ding
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Event camera has offered promising alternative for visual perception, especially in high speed and high dynamic range scenes. Recently, many deep learning methods have shown great success in providing model-free solutions to many event-based problems, such as optical flow estimation. However, existing deep learning methods did not address the importance of temporal information well from the perspective of architecture design and cannot effectively extract spatio-temporal features. Another line of research that utilizes Spiking Neural Network suffers from training issues for deeper architecture. To address these points, a novel input representation is proposed that captures the events temporal distribution for signal enhancement. Moreover, we introduce a spatio-temporal recurrent encoding-decoding neural network architecture for event-based optical flow estimation, which utilizes Convolutional Gated Recurrent Units to extract feature maps from a series of event images. Besides, our architecture allows some traditional frame-based core modules, such as correlation layer and iterative residual refine scheme, to be incorporated. The network is end-to-end trained with self-supervised learning on the Multi-Vehicle Stereo Event Camera dataset. We have shown that it outperforms all the existing state-of-the-art methods by a large margin.



قيم البحث

اقرأ أيضاً

Real-time video deblurring still remains a challenging task due to the complexity of spatially and temporally varying blur itself and the requirement of low computational cost. To improve the network efficiency, we adopt residual dense blocks into RN N cells, so as to efficiently extract the spatial features of the current frame. Furthermore, a global spatio-temporal attention module is proposed to fuse the effective hierarchical features from past and future frames to help better deblur the current frame. Another issue needs to be addressed urgently is the lack of a real-world benchmark dataset. Thus, we contribute a novel dataset (BSD) to the community, by collecting paired blurry/sharp video clips using a co-axis beam splitter acquisition system. Experimental results show that the proposed method (ESTRNN) can achieve better deblurring performance both quantitatively and qualitatively with less computational cost against state-of-the-art video deblurring methods. In addition, cross-validation experiments between datasets illustrate the high generality of BSD over the synthetic datasets. The code and dataset are released at https://github.com/zzh-tech/ESTRNN.
Skeleton-based human action recognition has attracted much attention with the prevalence of accessible depth sensors. Recently, graph convolutional networks (GCNs) have been widely used for this task due to their powerful capability to model graph da ta. The topology of the adjacency graph is a key factor for modeling the correlations of the input skeletons. Thus, previous methods mainly focus on the design/learning of the graph topology. But once the topology is learned, only a single-scale feature and one transformation exist in each layer of the networks. Many insights, such as multi-scale information and multiple sets of transformations, that have been proven to be very effective in convolutional neural networks (CNNs), have not been investigated in GCNs. The reason is that, due to the gap between graph-structured skeleton data and conventional image/video data, it is very challenging to embed these insights into GCNs. To overcome this gap, we reinvent the split-transform-merge strategy in GCNs for skeleton sequence processing. Specifically, we design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition. Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths. Extensive experiments demonstrate that our network outperforms state-of-the-art methods by a significant margin with only 1/5 of the parameters and 1/10 of the FLOPs. Code is available at https://github.com/yellowtownhz/STIGCN.
We propose a multiscale spatio-temporal graph neural network (MST-GNN) to predict the future 3D skeleton-based human poses in an action-category-agnostic manner. The core of MST-GNN is a multiscale spatio-temporal graph that explicitly models the rel ations in motions at various spatial and temporal scales. Different from many previous hierarchical structures, our multiscale spatio-temporal graph is built in a data-adaptive fashion, which captures nonphysical, yet motion-based relations. The key module of MST-GNN is a multiscale spatio-temporal graph computational unit (MST-GCU) based on the trainable graph structure. MST-GCU embeds underlying features at individual scales and then fuses features across scales to obtain a comprehensive representation. The overall architecture of MST-GNN follows an encoder-decoder framework, where the encoder consists of a sequence of MST-GCUs to learn the spatial and temporal features of motions, and the decoder uses a graph-based attention gate recurrent unit (GA-GRU) to generate future poses. Extensive experiments are conducted to show that the proposed MST-GNN outperforms state-of-the-art methods in both short and long-term motion prediction on the datasets of Human 3.6M, CMU Mocap and 3DPW, where MST-GNN outperforms previous works by 5.33% and 3.67% of mean angle errors in average for short-term and long-term prediction on Human 3.6M, and by 11.84% and 4.71% of mean angle errors for short-term and long-term prediction on CMU Mocap, and by 1.13% of mean angle errors on 3DPW in average, respectively. We further investigate the learned multiscale graphs for interpretability.
Most work on temporal action detection is formulated as an offline problem, in which the start and end times of actions are determined after the entire video is fully observed. However, important real-time applications including surveillance and driv er assistance systems require identifying actions as soon as each video frame arrives, based only on current and historical observations. In this paper, we propose a novel framework, Temporal Recurrent Network (TRN), to model greater temporal context of a video frame by simultaneously performing online action detection and anticipation of the immediate future. At each moment in time, our approach makes use of both accumulated historical evidence and predicted future information to better recognize the action that is currently occurring, and integrates both of these into a unified end-to-end architecture. We evaluate our approach on two popular online action detection datasets, HDD and TVSeries, as well as another widely used dataset, THUMOS14. The results show that TRN significantly outperforms the state-of-the-art.
Generating video descriptions automatically is a challenging task that involves a complex interplay between spatio-temporal visual features and language models. Given that videos consist of spatial (frame-level) features and their temporal evolutions , an effective captioning model should be able to attend to these different cues selectively. To this end, we propose a Spatio-Temporal and Temporo-Spatial (STaTS) attention model which, conditioned on the language state, hierarchically combines spatial and temporal attention to videos in two different orders: (i) a spatio-temporal (ST) sub-model, which first attends to regions that have temporal evolution, then temporally pools the features from these regions; and (ii) a temporo-spatial (TS) sub-model, which first decides a single frame to attend to, then applies spatial attention within that frame. We propose a novel LSTM-based temporal ranking function, which we call ranked attention, for the ST model to capture action dynamics. Our entire framework is trained end-to-end. We provide experiments on two benchmark datasets: MSVD and MSR-VTT. Our results demonstrate the synergy between the ST and TS modules, outperforming recent state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا