ترغب بنشر مسار تعليمي؟ اضغط هنا

Combining Event Calculus and Description Logic Reasoning via Logic Programming

74   0   0.0 ( 0 )
 نشر من قبل Peter Baumgartner
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Peter Baumgartner




اسأل ChatGPT حول البحث

The paper introduces a knowledge representation language that combines the event calculus with description logic in a logic programming framework. The purpose is to provide the user with an expressive language for modelling and analysing systems that evolve over time. The approach is exemplified with the logic programming language as implemented in the Fusemate system. The paper extends Fusemates rule language with a weakly DL-safe interface to the description logic $cal ALCIF$ and adapts the event calculus to this extended language. This way, time-stamped ABoxes can be manipulated as fluents in the event calculus. All that is done in the frame of Fusemates concept of stratification by time. The paper provides conditions for soundness and completeness where appropriate. Using an elaborated example it demonstrates the interplay of the event calculus, description logic and logic programming rules for computing possible models as plausible explanations of the current state of the modelled system.

قيم البحث

اقرأ أيضاً

145 - Ronald de Haan 2018
Description logics are knowledge representation languages that have been designed to strike a balance between expressivity and computational tractability. Many different description logics have been developed, and numerous computational problems for these logics have been studied for their computational complexity. However, essentially all complexity analyses of reasoning problems for description logics use the one-dimensional framework of classical complexity theory. The multi-dimensional framework of parameterized complexity theory is able to provide a much more detailed image of the complexity of reasoning problems. In this paper we argue that the framework of parameterized complexity has a lot to offer for the complexity analysis of description logic reasoning problems---when one takes a progressive and forward-looking view on parameterized complexity tools. We substantiate our argument by means of three case studies. The first case study is about the problem of concept satisfiability for the logic ALC with respect to nearly acyclic TBoxes. The second case study concerns concept satisfiability for ALC concepts parameterized by the number of occurrences of union operators and the number of occurrences of full existential quantification. The third case study offers a critical look at data complexity results from a parameterized complexity point of view. These three case studies are representative for the wide range of uses for parameterized complexity methods for description logic problems.
An attempt at unifying logic and functional programming is reported. As a starting point, we take the view that logic programs are not about logic but constitute inductive definitions of sets and relations. A skeletal language design based on these c onsiderations is sketched and a prototype implementation discussed.
We develop formal foundations for notions and mechanisms needed to support service-oriented computing. Our work builds on recent theoretical advancements in the algebraic structures that capture the way services are orchestrated and in the processes that formalize the discovery and binding of services to given client applications by means of logical representations of required and provided services. We show how the denotational and the operational semantics specific to conventional logic programming can be generalized using the theory of institutions to address both static and dynamic aspects of service-oriented computing. Our results rely upon a strong analogy between the discovery of a service that can be bound to an application and the search for a clause that can be used for computing an answer to a query; they explore the manner in which requests for external services can be described as service queries, and explain how the computation of their answers can be performed through service-oriented derivatives of unification and resolution, which characterize the binding of services and the reconfiguration of applications.
The intersection type assignment system has been designed directly as deductive system for assigning formulae of the implicative and conjunctive fragment of the intuitionistic logic to terms of lambda-calculus. But its relation with the logic is not standard. Between all the logics that have been proposed as its foundation, we consider ISL, which gives a logical interpretation of the intersection by splitting the intuitionistic conjunction into two connectives, with a local and global behaviour respectively, being the intersection the local one. We think ISL is a logic interesting by itself, and in order to support this claim we give a sequent calculus formulation of it, and we prove that it enjoys the cut elimination property.
136 - Van Hung Le , 2009
The paper introduces fuzzy linguistic logic programming, which is a combination of fuzzy logic programming, introduced by P. Vojtas, and hedge algebras in order to facilitate the representation and reasoning on human knowledge expressed in natural la nguages. In fuzzy linguistic logic programming, truth values are linguistic ones, e.g., VeryTrue, VeryProbablyTrue, and LittleFalse, taken from a hedge algebra of a linguistic truth variable, and linguistic hedges (modifiers) can be used as unary connectives in formulae. This is motivated by the fact that humans reason mostly in terms of linguistic terms rather than in terms of numbers, and linguistic hedges are often used in natural languages to express different levels of emphasis. The paper presents: (i) the language of fuzzy linguistic logic programming; (ii) a declarative semantics in terms of Herbrand interpretations and models; (iii) a procedural semantics which directly manipulates linguistic terms to compute a lower bound to the truth value of a query, and proves its soundness; (iv) a fixpoint semantics of logic programs, and based on it, proves the completeness of the procedural semantics; (v) several applications of fuzzy linguistic logic programming; and (vi) an idea of implementing a system to execute fuzzy linguistic logic programs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا