ترغب بنشر مسار تعليمي؟ اضغط هنا

Preliminary Synthesis of Carbon Nitride Thin Films by N$_2$/CH$_4$ Microwave Plasma Assisted Chemical Vapour Deposition: Characterisation of the Discharge and the Obtained Films

104   0   0.0 ( 0 )
 نشر من قبل Valerie Brien
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The present work deals with the synthesis of crystalline carbon nitride thin films by microwave plasma assisted chemical vapour deposition in N$_2$/CH$_4$ gas mixture. The discharge analysis by optical emission spectroscopy shows that the increase in the N$_2$/CH$_4$ ratio involves an important production of the CN and C$_2$ radicals. In the films X-ray energy dispersion spectroscopy shows that the N/C ratio decreases when the CH$_4$ percentage in N$_2$ increases. Xray diffraction and electron diffraction are used to study the carbon nitride films nature. Scanning electron microscopy shows that the films consisted of nano-crystalline grains. Carbon balls are also present on the film surface for CH$_4$ percentage higher than 4%. The transmission electron microscopy confirms the nano-structure of the film and shows the isotropic etching of the substrates, during the film growth.



قيم البحث

اقرأ أيضاً

The outstanding electrical and mechanical properties of graphene make it very attractive for several applications, Nanoelectronics above all. However a reproducible and non destructive way to produce high quality, large-scale area, single layer graph ene sheets is still lacking. Chemical Vapour Deposition of graphene on Cu catalytic thin films represents a promising method to reach this goal, because of the low temperatures (T < 900 Celsius degrees) involved during the process and of the theoretically expected monolayer self-limiting growth. On the contrary such self-limiting growth is not commonly observed in experiments, thus making the development of techniques allowing for a better control of graphene growth highly desirable. Here we report about the local ablation effect, arising in Raman analysis, due to the heat transfer induced by the laser incident beam onto the graphene sample.
Chromia (Cr2O3) has been extensively explored for the purpose of developing widespread industrial applications, owing to the convergence of a variety of mechanical, physical and chemical properties in one single oxide material. Various methods have b een used for large area synthesis of Cr2O3 films. However, for selective area growth and growth on thermally sensitive materials, laser-assisted chemical vapour deposition (LCVD) can be applied advantageously. Here we report on the growth of single layers of pure Cr2O3 onto sapphire substrates at room temperature by low pressure photolytic LCVD, using UV laser radiation and Cr(CO)6 as chromium precursor. The feasibility of the LCVD technique to access selective area deposition of chromia thin films is demonstrated. Best results were obtained for a laser fluence of 120 mJ cm-2 and a partial pressure ratio of O2 to Cr(CO)6 of 1.0. Samples grown with these experimental parameters are polycrystalline and their microstructure is characterised by a high density of particles whose size follows a lognormal distribution. Deposition rates of 0.1 nm s-1 and mean particle sizes of 1.85 {mu}m were measured for these films.
Ammonia (NH3) is commonly used as group V precursor in gallium nitride (GaN) metalorganic chemical vapor deposition (MOCVD). The high background carbon (C) impurity in MOCVD GaN is related to the low pyrolysis efficiency of NH3, which represents one of the fundamental challenges hindering the development of high purity thick GaN for vertical high power device applications. This work uses a laser-assisted MOCVD (LA-MOCVD) growth technique to address the high-C issue in MOCVD GaN. Carbon dioxide (CO2) laser with wavelength of 9.219 um was utilized to facilitate NH3 decomposition via resonant vibrational excitation. The LA-MOCVD GaN growth rate (as high as 10 um/hr) shows a strong linear relationship with the trimethylgallium (TMGa) flow rate, indicating high effective V/III ratios and hence efficient NH3 decomposition. Pits-free surface morphology of LA-MOCVD GaN was demonstrated for films with growth rate as high as 8.5 um/hr. The background [C] in LA-MOCVD GaN films decreases monotonically as the laser power increases. A low [C] at 5.5E15 cm-3 was achieved in LA-MOCVD GaN film grown with the growth rate of 4 um/hr. Charge transport characterization of LA-MOCVD GaN films reveals high crystalline quality with room temperature mobility >1000 cm2/Vs. LA-MOCVD growth technique provides an enabling route to achieve high quality GaN epitaxy with low-C impurity and fast growth rate simultaneously. This technique can also be extended for epitaxy of other nitride-based semiconductors.
We have studied the effect of deposition rate and layer thickness on the properties of epitaxial MgB2 thin films grown by hybrid physical-chemical vapor deposition on 4H-SiC substrates. The MgB2 film deposition rate depends linearly on the concentrat ion of B2H6 in the inlet gas mixture. We found that the superconducting and normal-state properties of the MgB2 films are determined by the film thickness, not by the deposition rate. When the film thickness was increased, the transition temperature, Tc, increased and the residual resistivity, rho0, decreased. Above about 300 nm, a Tc of 41.8 K, a rho0 of 0.28 mikroOhm.cm, and a residual resistance ratio RRR of over 30 were obtained. These values represent the best MgB2 properties reported thus far.
The controlled growth of carbon nitride (CN) films with tailored electronic properties and surface area is quite challenging due to the solid-state reaction and the lack of efficient interaction between C-N monomers and substrates. Herein, controlled growth of CN films over robust carbon nanotubes (CNT) fiber fabric is reported, which is obtained by either direct calcination of melamine on their surface, that yields a bulk material, or by its chemical vapor deposition resulting in hybrid films. These materials are effective electrodes consisting of high surface-area CN containing CNT fiber fabrics acting as a scaffold and a highly conducting built-in current collector. The results confirm that CNTs act as nucleation centers for the formation of CN films, forming close contact at the CN/CNT interphase, and resulting in efficient charge transfer upon illumination and enhanced electrochemical surface area.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا