ﻻ يوجد ملخص باللغة العربية
Quantum key distribution (QKD) gradually has become a crucial element of practical secure communication. In different scenarios, the security analysis of genuine QKD systems is complicated. A universal secret key rate calculation method, used for realistic factors such as multiple degrees of freedom encoding, asymmetric protocol structures, equipment flaws, environmental noise, and so on, is still lacking. Based on the correlations of statistical data, we propose a security analysis method without restriction on encoding schemes. This method makes a trade-off between applicability and accuracy, which can effectively analyze various existing QKD systems. We illustrate its ability by analyzing source flaws and a high-dimensional asymmetric protocol. Results imply that our method can give tighter bounds than the Gottesman-Lo-Lutkenhaus-Preskill (GLLP) analysis and is beneficial to analyze protocols with complex encoding structures. Our work has the potential to become a reference standard for the security analysis of practical QKD.
Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a
We propose a schematic setup of quantum key distribution (QKD) with an improved secret key rate based on high-dimensional quantum states. Two degrees-of-freedom of a single photon, orbital angular momentum modes, and multi-path modes, are used to enc
We present methods to strictly calculate the finite-key effects in quantum key distribution (QKD) with error rejection through two-way classical communication (TWCC) for the sending-or-not-sending twin-field protocol. Unlike the normal QKD without TW
High-dimensional quantum key distribution (QKD) allows to achieve information-theoretic secure communications, providing high key generation rates which cannot in principle be obtained by QKD protocols with binary encoding. Nonetheless, the amount of
The lists of bits processed in quantum key distribution are necessarily of finite length. The need for finite-key unconditional security bounds has been recognized long ago, but the theoretical tools have become available only very recently. We provi