ﻻ يوجد ملخص باللغة العربية
Recent work has demonstrated that pre-training in-domain language models can boost performance when adapting to a new domain. However, the costs associated with pre-training raise an important question: given a fixed budget, what steps should an NLP practitioner take to maximize performance? In this paper, we study domain adaptation under budget constraints, and approach it as a customer choice problem between data annotation and pre-training. Specifically, we measure the annotation cost of three procedural text datasets and the pre-training cost of three in-domain language models. Then we evaluate the utility of different combinations of pre-training and data annotation under varying budget constraints to assess which combination strategy works best. We find that, for small budgets, spending all funds on annotation leads to the best performance; once the budget becomes large enough, a combination of data annotation and in-domain pre-training works more optimally. We therefore suggest that task-specific data annotation should be part of an economical strategy when adapting an NLP model to a new domain.
We propose to adapt segmentation networks with a constrained formulation, which embeds domain-invariant prior knowledge about the segmentation regions. Such knowledge may take the form of simple anatomical information, e.g., structure size or shape,
In unsupervised domain adaptation (UDA), classifiers for the target domain are trained with massive true-label data from the source domain and unlabeled data from the target domain. However, it may be difficult to collect fully-true-label data in a s
Intermediate task fine-tuning has been shown to culminate in large transfer gains across many NLP tasks. With an abundance of candidate datasets as well as pre-trained language models, it has become infeasible to run the cross-product of all combinat
Conditional Text Generation has drawn much attention as a topic of Natural Language Generation (NLG) which provides the possibility for humans to control the properties of generated contents. Current conditional generation models cannot handle emergi
Unsupervised domain adaptation (UDA) aims to transfer the knowledge on a labeled source domain distribution to perform well on an unlabeled target domain. Recently, the deep self-training involves an iterative process of predicting on the target doma