ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre-train or Annotate? Domain Adaptation with a Constrained Budget

117   0   0.0 ( 0 )
 نشر من قبل Fan Bai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has demonstrated that pre-training in-domain language models can boost performance when adapting to a new domain. However, the costs associated with pre-training raise an important question: given a fixed budget, what steps should an NLP practitioner take to maximize performance? In this paper, we study domain adaptation under budget constraints, and approach it as a customer choice problem between data annotation and pre-training. Specifically, we measure the annotation cost of three procedural text datasets and the pre-training cost of three in-domain language models. Then we evaluate the utility of different combinations of pre-training and data annotation under varying budget constraints to assess which combination strategy works best. We find that, for small budgets, spending all funds on annotation leads to the best performance; once the budget becomes large enough, a combination of data annotation and in-domain pre-training works more optimally. We therefore suggest that task-specific data annotation should be part of an economical strategy when adapting an NLP model to a new domain.

قيم البحث

اقرأ أيضاً

We propose to adapt segmentation networks with a constrained formulation, which embeds domain-invariant prior knowledge about the segmentation regions. Such knowledge may take the form of simple anatomical information, e.g., structure size or shape, estimated from source samples or known a priori. Our method imposes domain-invariant inequality constraints on the network outputs of unlabeled target samples. It implicitly matches prediction statistics between target and source domains with permitted uncertainty of prior knowledge. We address our constrained problem with a differentiable penalty, fully suited for standard stochastic gradient descent approaches, removing the need for computationally expensive Lagrangian optimization with dual projections. Unlike current two-step adversarial training, our formulation is based on a single loss in a single network, which simplifies adaptation by avoiding extra adversarial steps, while improving convergence and quality of training. The comparison of our approach with state-of-the-art adversarial methods reveals substantially better performance on the challenging task of adapting spine segmentation across different MRI modalities. Our results also show a robustness to imprecision of size priors, approaching the accuracy of a fully supervised model trained directly in a target domain.Our method can be readily used for various constraints and segmentation problems.
In unsupervised domain adaptation (UDA), classifiers for the target domain are trained with massive true-label data from the source domain and unlabeled data from the target domain. However, it may be difficult to collect fully-true-label data in a s ource domain given a limited budget. To mitigate this problem, we consider a novel problem setting where the classifier for the target domain has to be trained with complementary-label data from the source domain and unlabeled data from the target domain named budget-friendly UDA (BFUDA). The key benefit is that it is much less costly to collect complementary-label source data (required by BFUDA) than collecting the true-label source data (required by ordinary UDA). To this end, the complementary label adversarial network (CLARINET) is proposed to solve the BFUDA problem. CLARINET maintains two deep networks simultaneously, where one focuses on classifying complementary-label source data and the other takes care of the source-to-target distributional adaptation. Experiments show that CLARINET significantly outperforms a series of competent baselines.
Intermediate task fine-tuning has been shown to culminate in large transfer gains across many NLP tasks. With an abundance of candidate datasets as well as pre-trained language models, it has become infeasible to run the cross-product of all combinat ions to find the best transfer setting. In this work we first establish that similar sequential fine-tuning gains can be achieved in adapter settings, and subsequently consolidate previously proposed methods that efficiently identify beneficial tasks for intermediate transfer learning. We experiment with a diverse set of 42 intermediate and 11 target English classification, multiple choice, question answering, and sequence tagging tasks. Our results show that efficient embedding based methods that rely solely on the respective datasets outperform computational expensive few-shot fine-tuning approaches. Our best methods achieve an average Regret@3 of less than 1% across all target tasks, demonstrating that we are able to efficiently identify the best datasets for intermediate training.
312 - Yu Duan , Canwen Xu , Jiaxin Pei 2019
Conditional Text Generation has drawn much attention as a topic of Natural Language Generation (NLG) which provides the possibility for humans to control the properties of generated contents. Current conditional generation models cannot handle emergi ng conditions due to their joint end-to-end learning fashion. When a new condition added, these techniques require full retraining. In this paper, we present a new framework named Pre-train and Plug-in Variational Auto-Encoder (PPVAE) towards flexible conditional text generation. PPVAE decouples the text generation module from the condition representation module to allow one-to-many conditional generation. When a fresh condition emerges, only a lightweight network needs to be trained and works as a plug-in for PPVAE, which is efficient and desirable for real-world applications. Extensive experiments demonstrate the superiority of PPVAE against the existing alternatives with better conditionality and diversity but less training effort.
Unsupervised domain adaptation (UDA) aims to transfer the knowledge on a labeled source domain distribution to perform well on an unlabeled target domain. Recently, the deep self-training involves an iterative process of predicting on the target doma in and then taking the confident predictions as hard pseudo-labels for retraining. However, the pseudo-labels are usually unreliable, and easily leading to deviated solutions with propagated errors. In this paper, we resort to the energy-based model and constrain the training of the unlabeled target sample with the energy function minimization objective. It can be applied as a simple additional regularization. In this framework, it is possible to gain the benefits of the energy-based model, while retaining strong discriminative performance following a plug-and-play fashion. We deliver extensive experiments on the most popular and large scale UDA benchmarks of image classification as well as semantic segmentation to demonstrate its generality and effectiveness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا