ﻻ يوجد ملخص باللغة العربية
In this work, we propose a new auxetic (negative Poissons ratio values) structure, based on a $gamma$-graphyne structure, here named $Agamma G$ $structure$. Graphynes are 2D carbon allotropes with phenylic rings connected by acetylenic groups. The A$gamma$G structural/mechanical and electronic properties, as well as its thermal stability, were investigated using classical reactive and quantum molecular dynamics simulations. We found that A$gamma$G has a large bandgap of 2.48 eV and is thermally stable at a large range of temperatures. It presents a Youngs modulus that is an order of magnitude smaller than that of graphene or $gamma$-graphyne. The classical and quantum results are consistent and validate that the A$gamma$G is auxetic, both when isolated (vacuum) and when deposited on a copper substrate. We believe that this is the densest auxetic structure belonging to the graphyne-like families.
Graphyne nanotubes (GNTs) are nanostructures obtained from rolled up graphyne sheets, in the same way carbon nanotubes (CNTs) are obtained from graphene ones. Graphynes are 2D carbon-allotropes composed of atoms in sp and sp2 hybridized states. Simil
Higher-order topological phases and real topological phases are two emerging topics in topological states of matter, which have been attracting considerable research interest. However, it remains a challenge to find realistic materials that can reali
GeSe and SnSe monochalcogenide monolayers and bilayers undergo a two-dimensional phase transition from a rectangular unit cell to a square unit cell at a temperature $T_c$ well below the melting point. Its consequences on material properties are stud
The magnetic behavior of $Fe_{3-x}O_4$ nanoparticles synthesized either by high-temperature decomposition of an organic iron precursor or low-temperature co-precipitation in aqueous conditions, is compared. Transmission electron microscopy, X-ray abs
Graphyne, a single atomic layer structure of the carbon six-member rings connected by one acetilenic linkage, is a promising anode of rechargeable batteries. In this paper, a first-principle study has been carried out on graphyne as a new candidate f