ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalization in Ball Banach Function Spaces of Brezis--Van Schaftingen--Yung Formulae with Applications to Fractional Sobolev and Gagliardo--Nirenberg Inequalities

397   0   0.0 ( 0 )
 نشر من قبل Dachun Yang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $X$ be a ball Banach function space on ${mathbb R}^n$. In this article, under the mild assumption that the Hardy--Littlewood maximal operator is bounded on the associated space $X$ of $X$, the authors prove that, for any $fin C_{mathrm{c}}^2({mathbb R}^n)$, $$sup_{lambdain(0,infty)}lambdaleft |left|left{yin{mathbb R}^n: |f(cdot)-f(y)| >lambda|cdot-y|^{frac{n}{q}+1}right}right|^{frac{1}{q}} right|_Xsim | abla f|_X$$ with the positive equivalence constants independent of $f$, where $qin(0,infty)$ is an index depending on the space $X$, and $|E|$ denotes the Lebesgue measure of a measurable set $Esubset {mathbb R}^n$. Particularly, when $X:=L^p({mathbb R}^n)$ with $pin [1,infty)$, the above estimate holds true for any given $qin [1, p]$, which when $q=p$ is exactly the recent surprising formula of H. Brezis, J. Van Schaftingen, and P.-L. Yung, and which even when $q< p$ is new. This generalization has a wide range of applications and, particularly, enables the authors to establish new fractional Sobolev and Gagliardo--Nirenberg inequalities in various function spaces, including Morrey spaces, mixed-norm Lebesgue spaces, variable Lebesgue spaces, weighted Lebesgue spaces, Orlicz spaces, and Orlicz-slice (generalized amalgam) spaces, and, even in all these special cases, the obtained results are new. The proofs of these results strongly depend on the Poincare inequality, the extrapolation, the exact operator norm on $X$ of the Hardy--Littlewood maximal operator, and the geometry of $mathbb{R}^n.$



قيم البحث

اقرأ أيضاً

We prove a Lieb-Thirring type inequality for potentials such that the associated Schr{o}dinger operator has a pure discrete spectrum made of an unbounded sequence of eigenvalues. This inequality is equivalent to a generalized Gagliardo-Nirenberg ineq uality for systems. As a special case, we prove a logarithmic Sobolev inequality for infinite systems of mixed states. Optimal constants are determined and free energy estimates in connection with mixed states representations are also investigated.
127 - Carlo Morosi 2016
We consider the inequalities of Gagliardo-Nirenberg and Sobolev in R^d, formulated in terms of the Laplacian Delta and of the fractional powers D^n := (-Delta)^(n/2) with real n >= 0; we review known facts and present novel results in this area. Afte r illustrating the equivalence between these two inequalities and the relations between the corresponding sharp constants and maximizers, we focus the attention on the L^2 case where, for all sufficiently regular f : R^d -> C, the norm || D^j f||_{L^r} is bounded in terms of || f ||_{L^2} and || D^n f ||_{L^2} for 1/r = 1/2 - (theta n - j)/d, and suitable values of j,n,theta (with j,n possibly noninteger). In the special cases theta = 1 and theta = j/n + d/2 n (i.e., r = + infinity), related to previous results of Lieb and Ilyin, the sharp constants and the maximizers can be found explicitly; we point out that the maximizers can be expressed in terms of hypergeometric, Fox and Meijer functions. For the general L^2 case, we present two kinds of upper bounds on the sharp constants: the first kind is suggested by the literature, the second one is an alternative proposal of ours, often more precise than the first one. We also derive two kinds of lower bounds. Combining all the available upper and lower bounds, the Gagliardo-Nirenberg and Sobolev sharp constants are confined to quite narrow intervals. Several examples are given.
With a view towards Riemannian or sub-Riemannian manifolds, RCD metric spaces and specially fractals, this paper makes a step further in the development of a theory of heat semigroup based $(1,p)$ Sobolev spaces in the general framework of Dirichlet spaces. Under suitable assumptions that are verified in a variety of settings, the tools developed by D. Bakry, T. Coulhon, M. Ledoux and L. Saloff-Coste in the paper Sobolev inequalities in disguise allow us to obtain the whole family of Gagliardo-Nirenberg and Trudinger-Moser inequalities with optimal exponents. The latter depend not only on the Hausdorff and walk dimensions of the space but also on other invariants. In addition, we prove Morrey type inequalities and apply them to study the infimum of the exponents that ensure continuity of Sobolev functions. The results are illustrated for fractals using the Vicsek set, whereas several conjectures are made for nested fractals and the Sierpinski carpet.
We study a convergence result of Bourgain--Brezis--Mironescu (BBM) using Triebel-Lizorkin spaces. It is well known that as spaces $W^{s,p} = F^{s}_{p,p}$, and $H^{1,p} = F^{1}_{p,2}$. When $sto 1$, the $F^{s}_{p,p}$ norm becomes the $F^{1}_{p,p}$ nor m but BBM showed that the $W^{s,p}$ norm becomes the $H^{1,p} = F^{1}_{p,2}$ norm. Naively, for $p eq 2$ this seems like a contradiction, but we resolve this by providing embeddings of $W^{s,p}$ into $F^{s}_{p,q}$ for $q in {p,2}$ with sharp constants with respect to $s in (0,1)$. As a consequence we obtain an $mathbb{R}^N$-version of the BBM-result, and obtain several more embedding and convergence theorems of BBM-type that to the best of our knowledge are unknown.
Interpolation inequalities in Triebel-Lizorkin-Lorentz spaces and Besov-Lorentz spaces are studied for both inhomogeneous and homogeneous cases. First we establish interpolation inequalities under quite general assumptions on the parameters of the fu nction spaces. Several results on necessary conditions are also provided. Next, utilizing the interpolation inequalities together with some embedding results, we prove Gagliardo-Nirenberg inequalities for fractional derivatives in Lorentz spaces, which do hold even for the limiting case when one of the parameters is equal to 1 or $infty$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا