ﻻ يوجد ملخص باللغة العربية
A well-established approach to reasoning about loops during program analysis is to capture the effect of a loop by extracting recurrences from the loop; these express relationships between the values of variables, or program properties such as cost, on successive loop iterations. Recurrence solvers are capable of computing closed forms for some recurrences, thus deriving precise relationships capturing the complete loop execution. However, many recurrences extracted from loops cannot be solved, due to their having multiple recursive cases or multiple arguments. In the literature, several techniques for approximating the solution of unsolvable recurrences have been proposed. The approach presented in this paper is to define transformations based on regular path expressions and loop counters that (i) transform multi-path loops to single-path loops, giving rise to recurrences with a single recursive case, and (ii) transform multi-argument recurrences to single-argument recurrences, thus enabling the use of recurrence solvers on the transformed recurrences. Using this approach, precise solutions can sometimes be obtained that are not obtained by approximation methods.
Recursion-free Constrained Horn Clauses (CHCs) are logic-programming problems that can model safety properties of programs with bounded iteration and recursion. In addition, many CHC solvers reduce recursive systems to a series of recursion-free CHC
Two-way regular path queries (2RPQs) have received increased attention recently due to their ability to relate pairs of objects by flexibly navigating graph-structured data. They are present in property paths in SPARQL 1.1, the new standard RDF query
Provably correct software is one of the key challenges in our softwaredriven society. While formal verification establishes the correctness of a given program, the result of program synthesis is a program which is correct by construction. In this pap
Despite the recent advance of automated program verification, reasoning about recursive data structures remains as a challenge for verification tools and their backends such as SMT and CHC solvers. To address the challenge, we introduce the notion of
Many Program Verification and Synthesis problems of interest can be modeled directly using Horn clauses and many recent advances in the CLP and CAV communities have centered around efficiently solving problems presented as Horn clauses. The HCVS se