ترغب بنشر مسار تعليمي؟ اضغط هنا

Vortices and Dust Devils As Observed by the MEDA Instruments onboard Mars 2020 Perseverance Rover

105   0   0.0 ( 0 )
 نشر من قبل Brian Jackson
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Brian Jackson




اسأل ChatGPT حول البحث

An important and perhaps dominant source of dust in the martian atmosphere, dust devils play a key role in Mars climate. Datasets from previous landed missions have revealed dust devil activity, constrained their structures, and elucidated their dust-lifting capacities. However, each landing site and observational season exhibits unique meteorological properties that shape dust devil activity and help illuminate their dependence on ambient conditions. The recent release of data from the Mars Environmental Dynamics Analyzer (MEDA) instrument suite onboard the Mars 2020 Perseverance rover promises a new treasure-trove for dust devil studies. In this study, we sift the time-series from MEDAs Pressure Sensor (PS) and Radiative and Dust Sensors (RDS) to look for the signals of passing vortices and dust devils. We detected 309 vortex encounters over the missions first 89 sols. Consistent with predictions, these encounter rates exceed InSight and Curiositys encounter rates by factors of several. The RDS time-series also allows us to assess whether a passing vortex is likely to be dusty (and therefore is a true dust devil) or dustless. We find that about one-third of vortices show signs of dust-lofting, although unfavorable encounter geometries may have prevented us from detecting dust for other vortices. In addition to these results, we discuss prospects for vortex studies as additional data from Mars 2020 are processed and made available.


قيم البحث

اقرأ أيضاً

The Planetary Instrument for X-ray Lithochemistry (PIXL) is a micro-focus X-ray fluorescence spectrometer mounted on the robotic arm of NASAs Perseverance rover. PIXL will acquire high spatial resolution observations of rock and soil chemistry, rapid ly analyzing the elemental chemistry of a target surface. In 10 seconds, PIXL can use its powerful 120 micrometer diameter X-ray beam to analyze a single, sand-sized grain with enough sensitivity to detect major and minor rock-forming elements, as well as many trace elements. Over a period of several hours, PIXL can autonomously scan an area of the rock surface and acquire a hyperspectral map comprised of several thousand individual measured points.
LaRa (Lander Radioscience) is an experiment on the ExoMars 2020 mission that uses the Doppler shift on the radio link due to the motion of the ExoMars platform tied to the surface of Mars with respect to the Earth ground stations (e.g. the deep space network stations of NASA), in order to precisely measure the relative velocity of the lander on Mars with respect to the Earth. The LaRa measurements shall improve the understanding of the structure and processes in the deep interior of Mars by obtaining the rotation and orientation of Mars with a better precision compared to the previous missions. In this paper, we provide the analysis done until now for the best realization of these objectives. We explain the geophysical observation that will be reached with LaRa (Length-of-day variations, precession, nutation, and possibly polar motion). We develop the experiment set up, which includes the ground stations on Earth (so-called ground segment). We describe the instrument, i.e. the transponder and its three antennas. We further detail the link budget and the expected noise level that will be reached. Finally, we detail the expected results, which encompasses the explanation of how we shall determine Mars orientation parameters, and the way we shall deduce Mars interior structure and Mars atmosphere from them. Lastly, we explain briefly how we will be able to determine the Surface platform position.
Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for character ization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 {mu}m effective radius during northern summer and a 2 {mu}m effective radius at the onset of a dust lifting event. The solar longitude (LS) 20-136{deg} period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS=50 and 115{deg}. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site.
Conditions on Saturns moon Titan suggest dust devils, which are convective, dust-laden plumes, may be active. Although the exact nature of dust on Titan is unclear, previous observations confirm an active aeolian cycle, and dust devils may play an im portant role in Titans aeolian cycle, possibly contributing to regional transport of dust and even production of sand grains. The Dragonfly mission to Titan will document dust devil and convective vortex activity and thereby provide a new window into these features, and our analysis shows that associated winds are likely to be modest and pose no hazard to the mission.
Large-scale vortices in protoplanetary disks are thought to form and survive for long periods of time. Hence, they can significantly change the global disk evolution and particularly the distribution of the solid particles embedded in the gas, possib ly explaining asymmetries and dust concentrations recently observed at sub-millimeter and millimeter wavelengths. We investigate the spatial distribution of dust grains using a simple model of protoplanetary disk hosted by a giant gaseous vortex. We explore the dependence of the results on grain size and deduce possible consequences and predictions for observations of the dust thermal emission at sub-millimeter and millimeter wavelengths. Global 2D simulations with a bi-fluid code are used to follow the evolution of a single population of solid particles aerodynamically coupled to the gas. Possible observational signatures of the dust thermal emission are obtained using simulators of ALMA and ngVLA observations. We find that a giant vortex not only captures dust grains with Stokes number St < 1 but can also affect the distribution of larger grains (with St ~ 1) carving a gap associated to a ring composed of incompletely trapped particles. The results are presented for different particle size and associated to their possible signatures in disk observations. Gap clearing in the dust spatial distribution could be due to the interaction with a giant gaseous vortex and their associated spiral waves, without the gravitational assistance of a planet. Hence, strong dust concentrations at short sub-mm wavelengths associated with a gap and an irregular ring at longer mm and cm wavelengths could indicate the presence of an unseen gaseous vortex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا