ﻻ يوجد ملخص باللغة العربية
An important and perhaps dominant source of dust in the martian atmosphere, dust devils play a key role in Mars climate. Datasets from previous landed missions have revealed dust devil activity, constrained their structures, and elucidated their dust-lifting capacities. However, each landing site and observational season exhibits unique meteorological properties that shape dust devil activity and help illuminate their dependence on ambient conditions. The recent release of data from the Mars Environmental Dynamics Analyzer (MEDA) instrument suite onboard the Mars 2020 Perseverance rover promises a new treasure-trove for dust devil studies. In this study, we sift the time-series from MEDAs Pressure Sensor (PS) and Radiative and Dust Sensors (RDS) to look for the signals of passing vortices and dust devils. We detected 309 vortex encounters over the missions first 89 sols. Consistent with predictions, these encounter rates exceed InSight and Curiositys encounter rates by factors of several. The RDS time-series also allows us to assess whether a passing vortex is likely to be dusty (and therefore is a true dust devil) or dustless. We find that about one-third of vortices show signs of dust-lofting, although unfavorable encounter geometries may have prevented us from detecting dust for other vortices. In addition to these results, we discuss prospects for vortex studies as additional data from Mars 2020 are processed and made available.
The Planetary Instrument for X-ray Lithochemistry (PIXL) is a micro-focus X-ray fluorescence spectrometer mounted on the robotic arm of NASAs Perseverance rover. PIXL will acquire high spatial resolution observations of rock and soil chemistry, rapid
LaRa (Lander Radioscience) is an experiment on the ExoMars 2020 mission that uses the Doppler shift on the radio link due to the motion of the ExoMars platform tied to the surface of Mars with respect to the Earth ground stations (e.g. the deep space
Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for character
Conditions on Saturns moon Titan suggest dust devils, which are convective, dust-laden plumes, may be active. Although the exact nature of dust on Titan is unclear, previous observations confirm an active aeolian cycle, and dust devils may play an im
Large-scale vortices in protoplanetary disks are thought to form and survive for long periods of time. Hence, they can significantly change the global disk evolution and particularly the distribution of the solid particles embedded in the gas, possib