ﻻ يوجد ملخص باللغة العربية
Large eddy simulations (LES) are employed to investigate the role of time-varying currents on the form drag and vortex dynamics of submerged 3D topography in a stratified rotating environment. The current is of the form $U_c+U_t sin(2pi f_t t)$, where $U_c$ is the mean, $U_t$ is the tidal component and $f_t$ is its frequency. A conical obstacle is considered in the regime of low Froude number. When tides are absent, eddies are shed at the natural shedding frequency $f_{s,c}$. The relative frequency $f^*=f_{s,c}/f_t$ is varied in a parametric study which reveals states of high time-averaged form drag coefficient. There is a two-fold amplification of the form drag coefficient relative to the no-tide ($U_t=0$) case when $f^*$ lies between 0.5 and 1. The spatial organization of the near-wake vortices in the high drag states is different from a Karman vortex street. For instance, the vortex shedding from the obstacle is symmetric when $f^*=5/12$ and strongly asymmetric when $f^*=5/6$. The increase in form drag with increasing $f^*$ stems from bottom intensification of the pressure in the obstacle lee which is linked to changes in flow separation and near-wake vortices.
The large-scale structures in the ocean and the atmosphere are in geostrophic balance, and a conduit must be found to channel the energy to the small scales where it can be dissipated. In turbulence this takes the form of an energy cascade, whereas o
To investigate the formation mechanism of energy spectra of internal waves in the oceans, direct numerical simulations are performed. The simulations are based on the reduced dynamical equations of rotating stratified turbulence. In the reduced dynam
Kraichnan seminal ideas on inverse cascades yielded new tools to study common phenomena in geophysical turbulent flows. In the atmosphere and the oceans, rotation and stratification result in a flow that can be approximated as two-dimensional at very
In the paper taking the assumption of the slowness of the change of the parameters of the vertically stratified medium in the horizontal direction and in time, the evolution of the non-harmonic wave packages of the internal gravity waves has been ana
Numerical simulations are made for forced turbulence at a sequence of increasing values of Reynolds number, R, keeping fixed a strongly stable, volume-mean density stratification. At smaller values of R, the turbulent velocity is mainly horizontal, a