ﻻ يوجد ملخص باللغة العربية
Distributed pose graph optimization (DPGO) is one of the fundamental techniques of swarm robotics. Currently, the sub-problems of DPGO are built on the native poses. Our validation proves that this approach may introduce an imbalance in the sizes of the sub-problems in real-world scenarios, which affects the speed of DPGO optimization, and potentially increases communication requirements. In addition, the coherence of the estimated poses is not guaranteed when the robots in the swarm fail, or partial robots are disconnected. In this paper, we propose BDPGO, a balanced distributed pose graph optimization framework using the idea of decoupling the robot poses and DPGO. BDPGO re-distributes the poses in the pose graph to the robot swarm in a balanced way by introducing a two-stage graph partitioning method to build balanced subproblems. Our validation demonstrates that BDPGO significantly improves the optimization speed without changing the specific algorithm of DPGO in realistic datasets. Whats more, we also validate that BDPGO is robust to robot failure, changes in the wireless network. BDPGO has capable of keeps the coherence of the estimated poses in these situations. The framework also has the potential to be applied to other collaborative simultaneous localization and mapping (CSLAM) problems involved in distributedly solving the factor graph.
Coordinated motion control in swarm robotics aims to ensure the coherence of members in space, i.e., the robots in a swarm perform coordinated movements to maintain spatial structures. This problem can be modeled as a tracking control problem, in whi
For aerial swarms, navigation in a prescribed formation is widely practiced in various scenarios. However, the associated planning strategies typically lack the capability of avoiding obstacles in cluttered environments. To address this deficiency, w
In this paper, we present a motion planning framework for multi-modal vehicle dynamics. Our proposed algorithm employs transcription of the optimization objective function, vehicle dynamics, and state and control constraints into sparse factor graphs
The Kilobot is a widely used platform for investigation of swarm robotics. Physical Kilobots are slow moving and require frequent recalibration and charging, which significantly slows down the development cycle. Simulators can speed up the process of
In the last few decades we have witnessed how the pheromone of social insect has become a rich inspiration source of swarm robotics. By utilising the virtual pheromone in physical swarm robot system to coordinate individuals and realise direct/indire