ترغب بنشر مسار تعليمي؟ اضغط هنا

A preliminary study of liver fat quantification using reported longitudinal ultrasound speed of sound and attenuation parameters

140   0   0.0 ( 0 )
 نشر من قبل Kevin Parker PhD
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantification of liver fat as a diagnostic assessment of steatosis remains an important priority for noninvasive imaging systems. We derive a framework in which the unknown fat volume percentage can be estimated from a pair of ultrasound measurements. The precise estimation of ultrasound speed of sound and attenuation within the liver are shown to be sufficient for estimating fat volume assuming a classical model of the properties of a composite elastic material. In this model, steatosis is represented as a random dispersion of spherical fat vacuoles with acoustic properties similar to those of edible oils. Using values of speed of sound and attenuation from the literature where normal and steatotic livers were studied near 3.5 MHz, we demonstrate agreement of the new estimation method with independent measures of fat. This framework holds the potential for translation to clinical scanners where the two ultrasound measurements can be made and utilized for improved quantitative assessment of steatosis.



قيم البحث

اقرأ أيضاً

Osteopenia is indicated as a common phenomenon in patients who have scoliosis. Quantitative ultrasound (QUS) has been used to assess skeletal status for decades, and recently ultrasound imaging using reflection signals from vertebra were as well appl ied to measure spinal curvatures on children with scoliosis. The objectives of this study are to develop a new method which can robustly extract a parameter from ultrasound spinal data for estimating bone quality of scoliotic patients and to investigate the potential for the parameter on predicting curve progression. The frequency amplitude index (FAI) was calculated based on the spectrum of the original radio frequency (RF) signals reflected from the tissue-vertebra interface. The correlation between FAI and reflection coefficient was validated using decalcified bovine bone samples in vitro, and the FAIs of scoliotic subjects were investigated in vivo referring to BMI, Cobb angles and curve progression status. The results showed that the intra-rater measures were highly reliable between different trials (ICC=0.997). The FAI value was strongly correlated to the reflection coefficient of bone tissue ($R^{2}=0.824$), and the lower FAI indicated the higher risk of curve progression for the non-mild cases. This preliminary study reported that the FAI method can provide a feasible and promising approach to assess bone quality and monitor curve progression of the patients who have AIS.
Purpose: To develop a novel quantitative method for detection of different tissue compartments based on bSSFP signal profile asymmetries (SPARCQ) and to provide a validation and proof-of-concept for voxel-wise water-fat separation and fat fraction ma pping. Methods: The SPARCQ framework uses phase-cycled bSSFP acquisitions to obtain bSSFP signal profiles. For each voxel, the profile is decomposed into a weighted sum of simulated profiles with specific off-resonance and relaxation time ratios. From the obtained set of weights, voxel-wise estimations of the fractions of the different components and their equilibrium magnetization are extracted. For the entire image volume, component-specific quantitative maps as well as banding-artifact-free images are generated. A SPARCQ proof-of-concept was provided for water-fat separation and fat fraction mapping. Noise robustness was assessed using simulations. A dedicated water-fat phantom was used to validate fat fractions estimated with SPARCQ against gold-standard 1H MRS. Quantitative maps were obtained in knees of six healthy volunteers, and SPARCQ repeatability was evaluated in scan rescan experiments. Results: Simulations showed that fat fraction estimations are accurate and robust for signal-to-noise ratios above 20. Phantom experiments showed good agreement between SPARCQ and gold-standard (GS) fat fractions (fF(SPARCQ) = 1.02*fF(GS) + 0.00235). In volunteers, quantitative maps and banding-artifact-free water-fat-separated images obtained with SPARCQ demonstrated the expected contrast between fatty and non-fatty tissues. The coefficient of repeatability of SPARCQ fat fraction was 0.0512. Conclusion: The SPARCQ framework was proposed as a novel quantitative mapping technique for detecting different tissue compartments, and its potential was demonstrated for quantitative water-fat separation.
Morphological features of small vessels provide invaluable information regarding underlying tissue, especially in cancerous tumors. This paper introduces methods for obtaining quantitative morphological features from microvasculature images obtained by non-contrast ultrasound imaging. Those images suffer from the artifact that limit quantitative analysis of the vessel morphological features. In this paper we introduce processing steps to increase accuracy of the morphological assessment for quantitative vessel analysis in presence of these artifact. Specifically, artificats are reduced by additional filtering and vessel segments obtained by skeletonization of the regularized microvasculature images are further analyzed to satisfy additional constraints, such as diameter, and length of the vessel segments. Measurement of some morphological metrics, such as tortuosity, depends on preserving large vessel trunks that may be broken down into multiple branches. We propose two methods to address this problem. In the first method, small vessel segments are suppressed in the vessel filtering process via adjusting the size scale of the regularization. Hence, tortuosity of the large trunks can be more accurately estimated by preserving longer vessel segments. In the second approach, small connected vessel segments are removed by a combination of morphological erosion and dilation operations on the segmented vasculature images. These methods are tested on representative in vivo images of breast lesion microvasculature, and the outcomes are discussed. This paper provides a tool for quantification of microvasculature image from non-contrast ultrasound imaging may result in potential biomarkers for diagnosis of some diseases.
Purpose: To achieve free-breathing quantitative fat and $R_2^*$ mapping of the liver using model-based iterative reconstruction, dubbed as MERLOT. Methods: For acquisition, we use a multi-echo radial FLASH (fast low-angle shot) sequence that acquires multiple echoes with different complementary radial spoke encodings. We investigate real-time single-slice and volumetric multi-echo radial acquisition. Model-based reconstruction based on generalized nonlinear inversion is used to jointly estimate water, fat, $R_2^*$, $B_0$ field inhomogeneity, and coil sensitivity maps from the multi-coil multi-echo radial spokes. Spatial smoothness regularization is applied onto the $B_0$ field and coil sensitivity maps, whereas joint sparsity regularization is employed for the other parameter maps. The method integrates calibration-less parallel imaging and compressed sensing and was implemented in Berkeley Advanced Reconstruction Toolbox (BART). For the volumetric acquisition, the respiratory motion is resolved with self-gating using Adapted Singular Spectrum Analysis (SSA-FARY). The quantitative accuracy of the proposed method was validated via numerical simulation, the NIST phantom, a water/fat phantom, and in in-vivo liver studies. Results: For real-time acquisition, the proposed model-based reconstruction allowed acquisition of dynamic liver fat fraction and $R_2^*$ maps at a temporal resolution of 0.3 seconds per frame. For the volumetric acquisition, whole liver coverage could be achieved in under 2 minutes using the self-gated motion-resolved reconstruction. Conclusion: The proposed multi-echo radial sampling sequence achieves fast k-space coverage and is robust to motion. The proposed model-based reconstruction yields spatially and temporally resolved liver fat fraction, $R_2^*$ and $B_0$ field maps at high undersampling factor and with volume coverage.
Hepatocellular carcinoma (HCC) is the second most frequent cause of malignancy-related death and is one of the diseases with the highest incidence in the world. Because the liver is the only organ in the human body that is supplied by two major vesse ls: the hepatic artery and the portal vein, various types of malignant tumors can spread from other organs to the liver. And due to the liver masses heterogeneous and diffusive shape, the tumor lesions are very difficult to be recognized, thus automatic lesion detection is necessary for the doctors with huge workloads. To assist doctors, this work uses the existing large-scale annotation medical image data to delve deep into liver lesion detection from multiple directions. To solve technical difficulties, such as the image-recognition task, traditional deep learning with convolution neural networks (CNNs) has been widely applied in recent years. However, this kind of neural network, such as Faster Regions with CNN features (R-CNN), cannot leverage the spatial information because it is applied in natural images (2D) rather than medical images (3D), such as computed tomography (CT) images. To address this issue, we propose a novel algorithm that is appropriate for liver CT imaging. Furthermore, according to radiologists experience in clinical diagnosis and the characteristics of CT images of liver cancer, a liver cancer-detection framework with CNN, including image processing, feature extraction, region proposal, image registration, and classification recognition, was proposed to facilitate the effective detection of liver lesions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا