ترغب بنشر مسار تعليمي؟ اضغط هنا

A new classification of algebraic identities for linear operators on associative algebras

114   0   0.0 ( 0 )
 نشر من قبل Murray Bremner
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a new approach to the classification of operator identities, based on basic concepts from the theory of algebraic operads together with computational commutative algebra applied to determinantal ideals of matrices over polynomial rings. We consider operator identities of degree 2 (the number of variables in each term) and multiplicity 1 or 2 (the number of operators in each term), but our methods apply more generally. Given an operator identity with indeterminate coefficients, we use partial compositions to construct a matrix of consequences, and then use computer algebra to determine the values of the indeterminates for which this matrix has submaximal rank. For multiplicity 1 we obtain six identities, including the derivation identity. For multiplicity 2 we obtain eighteen identities and two parametrized families, including the left and right averaging identities, the Rota-Baxter identity, the Nijenhuis identity, and some new identities which deserve further study.



قيم البحث

اقرأ أيضاً

We give the description of homogeneous Rota-Baxter operators, Reynolds operators, Nijenhuis operators, Average operators and differential operator of weight 1 of null-filiform associative algebras of arbitrary dimension.
We introduce an algebraic version of the Katsura $C^*$-algebra of a pair $A,B$ of integer matrices and an algebraic version of the Exel-Pardo $C^*$-algebra of a self-similar action on a graph. We prove a Graded Uniqueness Theorem for such algebras an d construct a homomorphism of the latter into a Steinberg algebra that, under mild conditions, is an isomorphism. Working with Steinberg algebras over non-Hausdorff groupoids we prove that in the unital case, our algebraic version of Katsura $C^*$-algebras are all isomorphic to Steinberg algebras.
128 - G. Abrams , P. N. Anh , A. Louly 2008
We prove an algebraic version of the Gauge-Invariant Uniqueness Theorem, a result which gives information about the injectivity of certain homomorphisms between ${mathbb Z}$-graded algebras. As our main application of this theorem, we obtain isomorph isms between the Leavitt path algebras of specified graphs. From these isomorphisms we are able to achieve two ends. First, we show that the $K_0$ groups of various sets of purely infinite simple Leavitt path algebras, together with the position of the identity element in $K_0$, classifies the algebras in these sets up to isomorphism. Second, we show that the isomorphism between matrix rings over the classical Leavitt algebras, established previously using number-theoretic methods, can be reobtained via appropriate isomorphisms between Leavitt path algebras.
We give the complete algebraic classification of all complex 4-dimensional nilpotent algebras. The final list has 234 (parametric families of) isomorphism classes of algebras, 66 of which are new in the literature.
In this paper, we establish the Composition-Diamond lemma for associative algebras with multiple linear operators. As applications, we obtain Groebner-Shirshov bases of free Rota-Baxter algebra, $lambda$-differential algebra and $lambda$-differential Rota-Baxter algebra, respectively. In particular, linear bases of these three free algebras are respectively obtained, which are essentially the same or similar to those obtained by Ebrahimi-Fard and Guo, and Guo and Keigher recently by using other methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا