ﻻ يوجد ملخص باللغة العربية
The importance of vaccination and the logistics involved in the procurement, storage and distribution of vaccines across their cold chain has come to the forefront during the COVID-19 pandemic. In this paper, we present a decision support framework for optimizing multiple aspects of vaccine distribution across a multi-tier cold chain network. We propose two multi-period optimization formulations within this framework: first to minimize inventory, ordering, transportation, personnel and shortage costs associated with a single vaccine; the second being an extension of the first for the case when multiple vaccines with differing efficacies and costs are available for the same disease. Vaccine transportation and administration lead times are also incorporated within the models. We use the case of the Indian state of Bihar and COVID-19 vaccines to illustrate the implementation of the framework. We present computational experiments to demonstrate: (a) the organization of the model outputs; (b) how the models can be used to assess the impact of storage capacities (at the cold chain points, transportation vehicle capacities) and manufacturer capacities on the optimal vaccine distribution pattern; and (c) the impact of vaccine efficacies and associated costs such as ordering and transportation costs on the vaccine selection decision informed by the model. We then consider the computational expense of the framework for realistic problem instances, and suggest multiple preprocessing techniques to reduce their computational burden. Our study presents public health authorities and other stakeholders with a vaccine distribution and capacity planning tool for multi-tier cold chain networks.
With the approval of vaccines for the coronavirus disease by many countries worldwide, most developed nations have begun, and developing nations are gearing up for the vaccination process. This has created an urgent need to provide a solution to opti
In this paper, we investigate a constrained optimal coordination problem for a class of heterogeneous nonlinear multi-agent systems described by high-order dynamics subject to both unknown nonlinearities and external disturbances. Each agent has a pr
A hybrid simulation-based framework involving system dynamics and agent-based simulation is proposed to address duopoly game considering multiple strategic decision variables and rich payoff, which cannot be addressed by traditional approaches involv
In the context of heterogeneous multi-robot teams deployed for executing multiple tasks, this paper develops an energy-aware framework for allocating tasks to robots in an online fashion. With a primary focus on long-duration autonomy applications, w
Electricity distribution networks that contain large photovoltaic solar systems can experience power flows between customers. These may create both technical and socio-economic challenges. This paper establishes how these challenges can be addressed