ترغب بنشر مسار تعليمي؟ اضغط هنا

Security Investment Risk Analysis Using Coefficient of Variation: An Alternative to Mean-Variance Analysis

88   0   0.0 ( 0 )
 نشر من قبل Julius Campecino
 تاريخ النشر 2021
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

This manuscript presents the mathematical relationship between coefficient of variation (CV) and security investment risk, defined herein as the probability of occurrence of negative returns. The equation suggests that there exists a range of CV where risk is zero and that risk never crosses 50% for securities with positive returns. We also found that at least for stocks, there is a strong correlation between CV and stock performance when CV is derived from annual returns calculated for each month (as opposed to using, for example, only annual returns based on end-of-the-year closing prices). We found that a low nonnegative CV of up to ~ 1.0 (~ 15% risk) correlates well with strong and consistent stock performance. Beyond this CV, share price growth gradually shows plateaus and/or large peaks and valleys. The efficient frontier was also re-examined based on CV analysis, and it was found that the direct relationship between risk and return (e.g., high risk, high return) is only robust when the correlation of returns among the portfolio securities is sufficiently negative. At low negative to positive correlation, the efficient frontier hypothesis breaks down and risk analysis based on CV becomes an important consideration.



قيم البحث

اقرأ أيضاً

We present the Shortfall Deviation Risk (SDR), a risk measure that represents the expected loss that occurs with certain probability penalized by the dispersion of results that are worse than such an expectation. SDR combines Expected Shortfall (ES) and Shortfall Deviation (SD), which we also introduce, contemplating two fundamental pillars of the risk concept, the probability of adverse events and the variability of an expectation, and considers extreme results. We demonstrate that SD is a generalized deviation measure, whereas SDR is a coherent risk measure. We achieve the dual representation of SDR, and we discuss issues such as its representation by a weighted ES, acceptance sets, convexity, continuity and the relationship with stochastic dominance. Illustrations with real and simulated data allow us to conclude that SDR offers greater protection in risk measurement compared with VaR and ES, especially in times of significant turbulence in riskier scenarios.
Developments in finance industry and academic research has led to innovative financial products. This paper presents an alternative approach to price American options. Our approach utilizes famous cite{heath1992bond} (HJM) technique to calculate Amer ican option written on an asset. Originally, HJM forward modeling approach was introduced as an alternative approach to bond pricing in fixed income market. Since then, cite{schweizer2008term} and cite{carmona2008infinite} extended HJM forward modeling approach to equity market by capturing dynamic nature of volatility. They modeled the term structure of volatility, which is commonly observed in the market place as opposed to constant volatility assumption under Black - Scholes framework. Using this approach, we propose an alternative value function, a stopping criteria and a stopping time. We give an example of how to price American put option using proposed methodology.
In this article we solve the problem of maximizing the expected utility of future consumption and terminal wealth to determine the optimal pension or life-cycle fund strategy for a cohort of pension fund investors. The setup is strongly related to a DC pension plan where additionally (individual) consumption is taken into account. The consumption rate is subject to a time-varying minimum level and terminal wealth is subject to a terminal floor. Moreover, the preference between consumption and terminal wealth as well as the intertemporal coefficient of risk aversion are time-varying and therefore depend on the age of the considered pension cohort. The optimal consumption and investment policies are calculated in the case of a Black-Scholes financial market framework and hyperbolic absolute risk aversion (HARA) utility functions. We generalize Ye (2008) (2008 American Control Conference, 356-362) by adding an age-dependent coefficient of risk aversion and extend Steffensen (2011) (Journal of Economic Dynamics and Control, 35(5), 659-667), Hentschel (2016) (Doctoral dissertation, Ulm University) and Aase (2017) (Stochastics, 89(1), 115-141) by considering consumption in combination with terminal wealth and allowing for consumption and terminal wealth floors via an application of HARA utility functions. A case study on fitting several models to realistic, time-dependent life-cycle consumption and relative investment profiles shows that only our extended model with time-varying preference parameters provides sufficient flexibility for an adequate fit. This is of particular interest to life-cycle products for (private) pension investments or pension insurance in general.
The paper solves the problem of optimal portfolio choice when the parameters of the asset returns distribution, like the mean vector and the covariance matrix are unknown and have to be estimated by using historical data of the asset returns. The new approach employs the Bayesian posterior predictive distribution which is the distribution of the future realization of the asset returns given the observable sample. The parameters of the posterior predictive distributions are functions of the observed data values and, consequently, the solution of the optimization problem is expressed in terms of data only and does not depend on unknown quantities. In contrast, the optimization problem of the traditional approach is based on unknown quantities which are estimated in the second step leading to a suboptimal solution. We also derive a very useful stochastic representation of the posterior predictive distribution whose application leads not only to the solution of the considered optimization problem, but provides the posterior predictive distribution of the optimal portfolio return used to construct a prediction interval. A Bayesian efficient frontier, a set of optimal portfolios obtained by employing the posterior predictive distribution, is constructed as well. Theoretically and using real data we show that the Bayesian efficient frontier outperforms the sample efficient frontier, a common estimator of the set of optimal portfolios known to be overoptimistic.
We analyze a family of portfolio management problems under relative performance criteria, for fund managers having CARA or CRRA utilities and trading in a common investment horizon in log-normal markets. We construct explicit constant equilibrium str ategies for both the finite population games and the corresponding mean field games, which we show are unique in the class of constant equilibria. In the CARA case, competition drives agents to invest more in the risky asset than they would otherwise, while in the CRRA case competitive agents may over- or under-invest, depending on their levels of risk tolerance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا