ﻻ يوجد ملخص باللغة العربية
We employ ionization-parameter mapping (IPM) to infer the optical depth of HII regions in the northern half of M33. We construct [OIII]$lambda 5007$/[OII]$lambda 3727$ and [OIII]$lambda 5007$/[SII]$lambda 6724$ ratio maps from narrow-band images continuum-subtracted in this way, from which we classify the HII regions by optical depth to ionizing radiation, based on their ionization structure. This method works relatively well in the low metallicity regime, $12 + log(rm O/H) leq 8.4$, where [OIII]$lambdalambda4949,5007$ is strong. However, at higher metallicities, the method breaks down due to the strong dependence of the [OIII]$lambdalambda4959,5007$ emission lines on the nebular temperature. Thus, although O$^{++}$ may be present in metal-rich HII regions, these commonly used emission lines do not serve as a useful indicator of its presence, and hence, the O ionization state. In addition, IPM as a diagnostic of optical depth is limited by spatial resolution. We also report a region of highly excited [OIII] extending over an area $sim$ 1 kpc across and [OIII]$lambda5007$ luminosity of $4.9pm 1.5times10^{38}$ erg/s, which is several times higher than the ionizing budget of any potential sources in this portion of the galaxy. Finally, this work introduces a new method for continuum subtraction of narrow-band images based on the dispersion of pixels around the mode of the diffuse-light flux distribution. In addition to M33, we demonstrate the method on C III]$lambda$1909 imaging of Haro~11, ESO 338-IG004, and Mrk~71.
We present our parameterizations of the log([NeIII]3869/[OII]3727) (Ne3O2) and log([OIII]5007/[OII]3727) ratios as comparable and effective diagnostics of ionization parameter in star-forming galaxies. Our calibrations are based on the most recent ge
The ionization parameter U is potentially useful for measuring radiation pressure feedback from massive star clusters, as it reflects the radiation-to-gas-pressure ratio and is readily derived from mid-infrared line ratios. We consider several effect
We use optical integral field spectroscopy and 8 and 24 micron mid-IR observations of the giant HII region NGC 588 in the disc of M33 as input and constraints for two-dimensional tailor-made photoionisation models. Two different geometrical approache
Context: Sh2-104 is a Galactic H ii region with a bubble morphology, detected at optical and radio wavelengths. It is considered the first observational confirmation of the collect-and-collapse model of triggered star-formation. Aims: We aim to analy
We present observations of the H-alpha, H-beta, [SII] 6716, 6731 and [NII] 6583 emission lines in the galactic HII region Sh2-235 with the Mapper of Narrow Galaxy Lines (MaNGaL), a tunable filter at the 1-m telescope of Special Astrophysical Observat