ﻻ يوجد ملخص باللغة العربية
We show that a transversely geometrically controlling boundary damping strip is sufficient but not necessary for $t^{-1/2}$-decay of waves on product manifolds. We give a general scheme to turn resolvent estimates for impedance problems on cross-sections to wave decay on product manifolds.
We consider manifolds with conic singularites that are isometric to $mathbb{R}^{n}$ outside a compact set. Under natural geometric assumptions on the cone points, we prove the existence of a logarithmic resonance-free region for the cut-off resolvent
We investigate the dispersive properties of solutions to the Schrodinger equation with a weakly decaying radial potential on cones. If the potential has sufficient polynomial decay at infinity, then we show that the Schrodinger flow on each eigenspac
We consider the stability problem for standing waves of nonlinear Dirac models. Under a suitable definition of linear stability, and under some restriction on the spectrum, we prove at the same time orbital and asymptotic stability. We are not able t
We prove that a continuous potential $q$ can be constructively determined from the knowledge of the Dirichlet-to-Neumann map for the perturbed biharmonic operator $Delta_g^2+q$ on a conformally transversally anisotropic Riemannian manifold of dimensi
We show that a continuous potential $q$ can be constructively determined from the knowledge of the Dirichlet-to-Neumann map for the Schrodinger operator $-Delta_g+q$ on a conformally transversally anisotropic manifold of dimension $geq 3$, provided t