ﻻ يوجد ملخص باللغة العربية
We perform an aperture-matched analysis of dust-corrected H$alpha$ and UV SFRs using 303 star-forming galaxies with spectroscopic redshifts $1.36<z_text{spec}<2.66$ from the MOSFIRE Deep Evolution Field (MOSDEF) survey. By combining H$alpha$ and H$beta$ emission line measurements with multi-waveband resolved CANDELS/3D-HST imaging, we directly compare dust-corrected H$alpha$ and UV SFRs, inferred assuming a fixed attenuation curve shape and constant SFHs, within the spectroscopic aperture. Previous studies have found that H$alpha$ and UV SFRs inferred with these assumptions generally agree for typical star-forming galaxies, but become increasingly discrepant for galaxies with higher SFRs ($gtrsim$100 M$_odot$ yr$^{-1}$), with H$alpha$-to-UV SFR ratios being larger for these galaxies. Our analysis shows that this trend persists even after carefully accounting for the apertures over which H$alpha$ and UV-based SFRs (and the nebular and stellar continuum reddening) are derived. Furthermore, our results imply that H$alpha$ SFRs may be higher in the centers of large galaxies (i.e., where there is coverage by the spectroscopic aperture) compared to their outskirts, which could be indicative of inside-out galaxy growth. Overall, we suggest that the persistent difference between nebular and stellar continuum reddening and high H$alpha$-to-UV SFR ratios at the centers of large galaxies may be indicative of a patchier distribution of dust in galaxies with high SFRs.
We investigate the nature of the relation among stellar mass, star-formation rate, and gas-phase metallicity (the M$_*$-SFR-Z relation) at high redshifts using a sample of 260 star-forming galaxies at $zsim2.3$ from the MOSDEF survey. We present an a
We study the properties of 55 morphologically-identified merging galaxy systems at z~2. These systems are flagged as mergers based on features such as tidal tails, double nuclei, and asymmetry. Our sample is drawn from the MOSFIRE Deep Evolution Fiel
Star Formation Rate (SFR) inferences are based in the so-called constant SFR approximation, where synthesis models are require to provide a calibration; we aims to study the key points of such approximation to produce accurate SFR inferences. We use
Population synthesis models predict that high-mass X-ray binary (HMXB) populations produced in low metallicity environments should be more X-ray luminous, a trend supported by studies of nearby galaxies. This trend may be responsible for the observed
We present a meta-analysis of star-formation rate (SFR) indicators in the GAMA survey, producing 12 different SFR metrics and determining the SFR-M* relation for each. We compare and contrast published methods to extract the SFR from each indicator,