ﻻ يوجد ملخص باللغة العربية
We investigate maximal tori in the Hochschild cohomology Lie algebra $HH^1(A)$ of a finite dimensional algebra $A$, and their connection with the fundamental groups associated to presentations of $A$. We prove that every maximal torus in $HH^1(A)$ arises as the dual of some fundamental group of $A$, extending work of Farkas, Green and Marcos; de la Pe~na and Saorin; and Le Meur. Combining this with known invariance results for Hochschild cohomology, we deduce that (in rough terms) the largest rank of a fundamental group of $A$ is a derived invariant quantity, and among self-injective algebras, an invariant under stable equivalences of Morita type. Using this we prove that there are only finitely many monomial algebras in any derived equivalence class of finite dimensional algebras; hitherto this was known only for very restricted classes of monomial algebras.
Let k be a number field, and let S be a finite set of k-rational points of P^1. We relate the Deligne-Goncharov contruction of the motivic fundamental group of X:=P^1_k- S to the Tannaka group scheme of the category of mixed Tate motives over X.
The normalizer $N_G(H_G)$ of a maximal torus $H_G$ in a semisimple complex Lie group $G$ does not in general allow a presentation as a semidirect product of $H_G$ and the corresponding Weyl group $W_G$. Meanwhile, splitting holds for classical groups
In our preceding paper we have introduced the notion of an $s$-homogeneous triple. In this paper we use this technique to study connected $s$-homogeneous algebras with two relations. For such algebras, we describe all possible pairs $(A,M)$, where $A
Consider a Frobenius kernel G in a split semisimple algebraic group, in very good characteristic. We provide an analysis of support for the Drinfeld center Z(rep(G)) of the representation category for G, or equivalently for the representation categor
Let $A$ be a split finite-dimensional associative unital algebra over a field. The first main result of this note shows that if the Ext-quiver of $A$ is a simple directed graph, then $HH^1(A)$ is a solvable Lie algebra. The second main result shows t