ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy Footprint of Blockchain Consensus Mechanisms Beyond Proof-of-Work

147   0   0.0 ( 0 )
 نشر من قبل Paolo Tasca
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Popular distributed ledger technology (DLT) systems using proof-of-work (PoW) for Sybil attack resistance have extreme energy requirements, drawing stern criticism from academia, businesses, and the media. DLT systems building on alternative consensus mechanisms, foremost proof-of-stake (PoS), aim to address this downside. In this paper, we take a first step towards comparing the energy requirements of such systems to understand whether they achieve this goal equally well. While multiple studies have been undertaken that analyze the energy demands of individual Blockchains, little comparative work has been done. We approach this research question by formalizing a basic consumption model for PoS blockchains. Applying this model to six archetypal blockchains generates three main findings: First, we confirm the concerns around the energy footprint of PoW by showing that Bitcoins energy consumption exceeds the energy consumption of all PoS-based systems analyzed by at least three orders of magnitude. Second, we illustrate that there are significant differences in energy consumption among the PoSbased systems analyzed, with permissionless systems having an overall larger energy footprint. Third, we point out that the type of hardware that validators use has a considerable impact on whether PoS blockchains energy consumption is comparable with or considerably larger than that of centralized, non-DLT systems.

قيم البحث

اقرأ أيضاً

Blockchain and general purpose distributed ledgers are foundational technologies which bring significant innovation in the infrastructures and other underpinnings of our socio-economic systems. These P2P technologies are able to securely diffuse info rmation within and across networks, without need for trustees or central authorities to enforce consensus. In this contribution, we propose a minimalistic stochastic model to understand the dynamics of blockchain-based consensus. By leveraging on random-walk theory, we model block propagation delay on different network topologies and provide a classification of blockchain systems in terms of two emergent properties. Firstly, we identify two performing regimes: a functional regime corresponding to an optimal system function; and a non-functional regime characterised by a congested or branched state of sub-optimal blockchains. Secondly, we discover a phase transition during the emergence of consensus and numerically investigate the corresponding critical point. Our results provide important insights into the consensus mechanism and sub-optimal states in decentralised systems.
In recent years, blockchain technology has received unparalleled attention from academia, industry, and governments all around the world. It is considered a technological breakthrough anticipated to disrupt several application domains. This has resul ted in a plethora of blockchain systems for various purposes. However, many of these blockchain systems suffer from serious shortcomings related to their performance and security, which need to be addressed before any wide-scale adoption can be achieved. A crucial component of any blockchain system is its underlying consensus algorithm, which in many ways, determines its performance and security. Therefore, to address the limitations of different blockchain systems, several existing as well novel consensus algorithms have been introduced. A systematic analysis of these algorithms will help to understand how and why any particular blockchain performs the way it functions. However, the existing studies of consensus algorithms are not comprehensive. Those studies have incomplete discussions on the properties of the algorithms and fail to analyse several major blockchain consensus algorithms in terms of their scopes. This article fills this gap by analysing a wide range of consensus algorithms using a comprehensive taxonomy of properties and by examining the implications of different issues still prevalent in consensus algorithms in detail. The result of the analysis is presented in tabular formats, which provides a visual illustration of these algorithms in a meaningful way. We have also analysed more than hundred top crypto-currencies belonging to different categories of consensus algorithms to understand their properties and to implicate different trends in these crypto-currencies. Finally, we have presented a decision tree of algorithms to be used as a tool to test the suitability of consensus algorithms under different criteria.
78 - Bin Cao , Yixin Li , Lei Zhang 2019
Blockchain has been regarded as a promising technology for Internet of Things (IoT), since it provides significant solutions for decentralized network which can address trust and security concerns, high maintenance cost problem, etc. The decentraliza tion provided by blockchain can be largely attributed to the use of consensus mechanism, which enables peer-to-peer trading in a distributed manner without the involvement of any third party. This article starts from introducing the basic concept of blockchain and illustrating why consensus mechanism plays an indispensable role in a blockchain enabled IoT system. Then, we discuss the main ideas of two famous consensus mechanisms including Proof of Work (PoW) and Proof of Stake (PoS), and list their limitations in IoT. Next, two mainstream Direct Acyclic Graph (DAG) based consensus mechanisms, i.e., the Tangle and Hashgraph, are reviewed to show why DAG consensus is more suitable for IoT system than PoW and PoS. Potential issues and challenges of DAG based consensus mechanism to be addressed in the future are discussed in the last.
As an emerging technology, blockchain has achieved great success in numerous application scenarios, from intelligent healthcare to smart cities. However, a long-standing bottleneck hindering its further development is the massive resource consumption attributed to the distributed storage and computation methods. This makes blockchain suffer from insufficient performance and poor scalability. Here, we analyze the recent blockchain techniques and demonstrate that the potential of widely-adopted consensus-based scaling is seriously limited, especially in the current era when Moores law-based hardware scaling is about to end. We achieve this by developing an open-source benchmarking tool, called Prism, for investigating the key factors causing low resource efficiency and then discuss various topology and hardware innovations which could help to scale up blockchain. To the best of our knowledge, this is the first in-depth study that explores the next-generation scaling strategies by conducting large-scale and comprehensive benchmarking.
82 - Shengling Wang , Xidi Qu , Qin Hu 2019
Though voting-based consensus algorithms in Blockchain outperform proof-based ones in energy- and transaction-efficiency, they are prone to incur wrong elections and bribery elections. The former originates from the uncertainties of candidates capabi lity and availability; and the latter comes from the egoism of voters and candidates. Hence, in this paper, we propose an uncertainty- and collusion-proof voting consensus mechanism, including the selection pressure-based voting consensus algorithm and the trustworthiness evaluation algorithm. The first algorithm can decrease the side effects of candidates uncertainties, lowering wrong elections while trading off the balance between efficiency and fairness in electing miners. The second algorithm adopts an incentive compatible scoring rule to evaluate the trustworthiness of voting, motivating voters to report true beliefs on candidates by making egoism in consistent with altruism so as to avoid bribery elections. A salient feature of our work is theoretically analyzing the proposed voting consensus mechanism by the large deviation theory. Our analysis provides not only the voting failure rate of a candidate but also its decay speed, based on which the concepts of {it the effective selection valve} and {it the effective expectation of merit} are introduced to help the system designer to determine the optimal voting standard and guide a candidate to behave in an optimal way for lowering the voting failure rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا