ﻻ يوجد ملخص باللغة العربية
In the classical synthesis problem, we are given an LTL formula psi over sets of input and output signals, and we synthesize a system T that realizes psi: with every input sequences x, the system associates an output sequence T(x) such that the generated computation x otimes T(x) satisfies psi. In practice, the requirement to satisfy the specification in all environments is often too strong, and it is common to add assumptions on the environment. We introduce a new type of relaxation on this requirement. In good-enough synthesis (GE-synthesis), the system is required to generate a satisfying computation only if one exists. Formally, an input sequence x is hopeful if there exists some output sequence y such that the computation x otimes y satisfies psi, and a system GE-realizes psi if it generates a computation that satisfies psi on all hopeful input sequences. GE-synthesis is particularly relevant when the notion of correctness is multi-valued (rather than Boolean), and thus we seek systems of the highest possible quality, and when synthesizing autonomous systems, which interact with unexpected environments and are often only expected to do their best. We study GE-synthesis in Boolean and multi-valued settings. In both, we suggest and solve various definitions of GE-synthesis, corresponding to different ways a designer may want to take hopefulness into account. We show that in all variants, GE-synthesis is not computationally harder than traditional synthesis, and can be implemented on top of existing tools. Our algorithms are based on careful combinations of nondeterministic and universal automata. We augment systems that GE-realize their specifications by monitors that provide satisfaction information. In the multi-valued setting, we provide both a worst-case analysis and an expectation-based one, the latter corresponding to an interaction with a stochastic environment.
This paper asks whether extrapolating the hidden space distribution of text examples from one class onto another is a valid inductive bias for data augmentation. To operationalize this question, I propose a simple data augmentation protocol called go
Since the early 1980s, the research community has developed ever more sophisticated algorithms for the problem of energy disaggregation, but despite decades of research, there is still a dearth of applications with demonstrated value. In this work, w
In GFG automata, it is possible to resolve nondeterminism in a way that only depends on the past and still accepts all the words in the language. The motivation for GFG automata comes from their adequacy for games and synthesis, wherein general nonde
Ontology-based data integration has been one of the practical methodologies for heterogeneous legacy database integrated service construction. However, it is neither efficient nor economical to build the cross-domain ontology on top of the schemas of
Many top-performing image captioning models rely solely on object features computed with an object detection model to generate image descriptions. However, recent studies propose to directly use scene graphs to introduce information about object rela