ﻻ يوجد ملخص باللغة العربية
The kagome superconductor AV$_3$Sb$_5$ (A=K, Rb, Cs) is a rare platform to explore the interplay between topology, geometrical frustration and symmetry-breaking orders. In addition to the charge density wave below $T_{CDW}sim94$~K and superconductivity below $T_{SC}sim3$~K, recent surface sensitive studies of CsV$_3$Sb$_5$ find evidence of 1$times$4 superlattices below $T^{*}sim60$~K. Interestingly, this unidirectional $4a_0$ phase may intertwine with charge density wave and superconductivity and possibly responsible for spectroscopic and transport anomalies below $T^{*}$. Here, combining high-resolution X-ray diffraction and scanning tunneling microscopy, we demonstrate that the 1$times$4 superstructure emerges uniquely on the surface and hence exclude the $4a_0$ phase as the origin of $T^{*}$ anomaly in the bulk CsV$_3$Sb$_5$.
Using first-principles calculations, we identify the origin of the observed charge density wave (CDW) formation in a layered kagome metal CsV$_3$Sb$_5$. It is revealed that the structural distortion of kagome lattice forming the trimeric and hexameri
I search for the ground state structures of the kagome metals KV$_3$Sb$_5$, RbV$_3$Sb$_5$, and CsV$_3$Sb$_5$ using first principles calculations. Group-theoretical analysis shows that there are seventeen different distortions that are possible due to
The new two-dimensional (2D) kagome superconductor CsV$_3$Sb$_5$ has attracted much recent attention due to the coexistence of superconductivity, charge order, topology and kagome physics. A key issue in this field is to unveil the unique reconstruct
Recently discovered alongside its sister compounds KV$_3$Sb$_5$ and RbV$_3$Sb$_5$, CsV$_3$Sb$_5$ crystallizes with an ideal kagome network of vanadium and antimonene layers separated by alkali metal ions. This work presents the electronic properties
The recently discovered layered kagome metals AV$_3$Sb$_5$ (A=K, Rb, Cs) exhibit diverse correlated phenomena, which are intertwined with a topological electronic structure with multiple van Hove singularities (VHSs) in the vicinity of the Fermi leve